英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

留学生毕业论文:手势识别方法3D外观和运动特点Gesture Recognition Using 3D Appearance and Motion Features

论文作者:留学生论文论文属性:硕士毕业论文 thesis登出时间:2011-01-23编辑:anterran点击率:11306

论文字数:4563论文编号:org201101231924413190语种:英语论文 English地区:美国价格:免费论文

关键词:Gesture RecognitionUsing 3D AppearanceMotion Features

Gesture Recognition Using 3D Appearance and Motion Features
Guangqi Ye, Jason J. Corso, Gregory D. Hager
Computational Interaction and Robotics Laboratory
The Johns Hopkins University
grant@cs.jhu.edu
Abstract
We present a novel 3D gesture recognition scheme that combines
代写留学生论文the 3Dappearance of the hand and the motion dynamics
of the gesture to classify manipulative and controlling
gestures. Our method does not directly track the hand. Instead,
we take an object-centered approach that efficiently
computes the 3D appearance using a region-based coarse
stereo matching algorithm in a volume around the hand.
The motion cue is captured via differentiating the appearance
feature. An unsupervised learning scheme is carried
out to capture the cluster structure of these feature-volumes.
Then, the image sequence of a gesture is converted to a series
of symbols that indicate the cluster identities of each
image pair. Two schemes (forward HMMs and neural networks)
are used to model the dynamics of the gestures. We
implemented a real-time system and performed numerous
gesture recognition experiments to analyze the performance
with different combinations of the appearance and motion
features. The system achieves recognition accuracy of over
96% using both the proposed appearance and the motion
cues.
1 Introduction
Gestures have been one of the important interaction Media
in current human-computer interaction (HCI) environments
[3, 4, 11, 12, 14, 16, 18, 21, 24, 25, 26]. Furthermore,
for 3D virtual environments (VE) in which the user
manipulates 3D objects, gestures are more appropriate and
powerful than traditional interactionmedia, such as a mouse
or a joystick. Vision-based gesture processing also provides
more convenience and immersiveness than those based on
mechanical devices.
Most reported gesture recognition work in the literature
(see Section 1.1) relies heavily on visual tracking and
template recognition algorithms. However general human
motion tracking is well-known to be a complex and difficult
problem [8, 17]. Additionally, while template matching
may be suitable for static gestures, its ability to capture
the spatio-temporal nature of dynamic gestures is in doubt.
Alternatively, methods that attempt to capture the 3D information
of the hand [11] have been proposed. However, it is
well-known that, in general circumstances, the stereo problem
is difficult to solve reliably and efficiently.
Human hands and arms are highly articulate and deformable
objects and hand gestures normally consist of 3D
global and local motion of the hands and the arms. Manipulative
and interaction gestures [14] have a temporal nature
that involve complex changes of hand configurations. The
complex spatial properties and dynamics of such gestures
render the problem too difficult for pure 2D (e.g. template
matching) methods. Ideally we would capture the full 3D
information of the hands to model the gestures [11]. However,
the difficulty and computational complexity of visual
3D localization and robust tracking prompts us to question
the necessity of doing so for gesture recognition.
To that end, we present a novel scheme to model and
recognize 3D temporal gestures using 3D appearance and
motion cues without tracking and explicit localization of
the hands. Instead we follow the site论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。

共 1/10 页首页上一页1234567下一页尾页

英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非

   Europe (24-hours)
   EN:13917206902
   china (24-hours)
   CN:13917206902
在线客服团队
    全天候24小时在线客服
      QQ:949925041 
  

微信公众订阅号