
I
nternationalizing testing? The title is deliberately cho-
sen— internationalizing testing. The idea is to
internationalize all software testing instead of devel-
oping a separate testing process and calling it inter-
nationalization testing.

Internationalized testing is not the same as local-
ization testing. In internationalized testing, product function-
ality and usability are the focus. Localization testing is for
linguistic relevance and for verification that functionality has
not changed as a result of localization.

Does this sound familiar? Some companies avoid interna-
tionalization testing and internationalized testing for any num-
ber of reasons. Product groups don’t think about internation-
alization at all. Or they think that internationalization testing is
performed by “some other group.” Or they just don’t think
international is very important. Many test groups don’t know
how to test for international and have no resources to help
them learn how.

Admittedly, there is not much information specifically
geared to internationalization testing. For example, in
researching this article, I found that only the most superficial
information is publicly available. So, it’s no wonder people
don’t understand the process. Of course, this article can’t
cover everything you need to know, but I’ll try to touch on as
many areas as possible.

Some companies do have internationalization in place,
but often the testing is not adequate to catch enough of the
internationalization problems, and it’s frequently done too late
in the quality assurance (QA) cycle for fixes to be integrated
into the product.

I hope to remove most of the FUD — Fear, Uncertainty and
Doubt — about internationalizing test suites in the course of

this article. It seems that a lot of testers don’t think that they
can test international specifications and data; they think it’s
too “hard” or that it will take a long time to learn. The reality
is that if the information is presented in a clear, straightfor-
ward way, it is very easy to learn. Once testers have done a
small amount of internationalized testing, they’ll feel like it’s a
regular part of the testing repertoire.

By internationalizing existing tests, including all testers, and
eliminating redundant areas, more of the product internation-
alization can be covered with the same number of people in
the same amount of time. I’ll provide some guidance on ways
you can get more coverage with the resources you have.

IS ENGLISH A BASE TEST?
Much of the software testing today is conducted as though

US English is a sort of base or core test, and other locale for-
mats and language characters are added functionality. But
consider how the product is developed. Properly internation-
alized products are designed and coded with internationaliza-
tion in mind. The internationalization in the code is every-
where, not in one or two modules. In fact, for most products
it would be impossible to have separate internationalization
modules installed alongside existing code to “perform inter-
nationalization functions.” The test design is no different. Test
plans and suites must be internationalized the same way pro-
gram design and code are.

English is written in ASCII, and ASCII is a direct subset of
all major charsets. So no matter which charset you’re testing,
you automatically test ASCII. Therefore, testing English
(ASCII) alone is a waste of time. The same is true for the C
and US locales. If the product is developed in the United
States, then the odds that there will be problems with data in a

THIS ARTICLE WAS FIRST PUBLISHED IN MULTILINGUAL COMPUTING & TECHNOLOGY #65 VOLUME 15 ISSUE 5 JULY/AUGUST 2004 81

INTERNATIONALIZING
SOFTWARE TESTING
Andrea Vine

US format are very low. Because the risk of problems is far
higher for other locale formats, it makes more sense to test in
another locale from the beginning.

Another reason for internationalizing testing relates directly
to the bottom line. For example, say a product has a group of
10 testers who can’t cover all the areas of a given product when
simply testing English, ASCII and C locale. That group out-
sources to one or two people all internationalization testing,
which encompasses the entire test suite in several languages,
charsets and locales, not to mention machine configurations.
However, the market for the non-English, non-ASCII, non-C-
locale functionality is over 60% of the total market. This means
that the test coverage is grossly inadequate for the size of the
market. Test coverage should take into account the entire mar-
ket and the higher risk areas in relation to the market.

REPRESENTATIVE SAMPLING
One way to look for internationalization bugs efficiently is

to test on a variety of locales using several different charsets
and formats. To try and touch different aspects of internation-
alization, I recommend using at least one candidate from each
of several categories. The categories in programmatic terms
are Western European; non-Latin single-byte
languages/locales; Asian; and bidirectional. This covers the
locales that make up the major business markets.

In addition to English, the Western European category
encompasses French, German, Spanish, Italian, Dutch,
Portuguese and in many cases Swedish, Norwegian and
Danish. It covers the countries of Western Europe, as the title
suggests. Which languages and locales from this group that
you choose depends on how much time you have, how much
business comes from each market and how many bugs have
been found in each locale in prior versions of the product.

By calling the second category non-Latin single-byte, I have
focused on the charset used. The charset is the data; if it isn’t
processed correctly, then nothing else can be. But in this case
I am also referring to the locales which use these charsets.
Some of the possibilities are Russia and Greece.

Major countries in the Asian category are Japan, China and
Korea. These require the written languages Japanese,
Simplified Chinese, Traditional Chinese and Korean.

Examples of bidirectional languages are Arabic and
Hebrew. While Arabic and Hebrew alone are right-to-left lan-
guages, the entire text becomes bidirectional when mixed
with left-to-right text or numbers.

WHO IS RESPONSIBLE?
In broad terms, everyone in the company is responsible for

internationalization. This includes people not involved in engi-
neering, such as product marketing, finance and operations.
Everybody who tests the product needs to think about interna-
tionalizing the tests. Developers who unit test their modules
must use international data in their testing, just as they inter-
nationalized their code. QA engineers may assist developers in
their unit test design; they can provide information on interna-
tionalizing the tests. By the same token, test engineers are
responsible for internationalizing the system tests. They may
receive help from development in understanding configura-

tions and settings for international use and should apply this
information to their configuration design.

If your company has some internationalization experts
available, consult with them on internationalizing your tests.
Most likely they can provide you with more detailed informa-
tion. Remember that internationalized testing or even interna-
tionalization testing is not the same as localization testing. Just
because there is a group doing localization testing doesn’t
mean that internationalization is covered.

CONFIGURATIONS
Plan which configurations will best cover the international-

ization of your product. The Internationalization
Requirements/ Taxonomy Document and Checklist Matrix
from the Sun Globalization Resources define what it means for
a product to be internationalized. The primary function is to
help groups assess the internationalization status of their
products according to a matrix of interfaces and functions.
The document and checklist matrix are available at
http://developer.sun .com/dev/gadc/des_dev/i18ntaxonomy

A product group can complete the matrix in the planning
and design stage and then revisit it for the development stage.
Testing can then take the matrix and verify that areas marked
as compliant or partially compliant work as described.

Locale is an important configuration element. Several types
of locales, such as client, system and thread, can be used in
or by a product. It is essential to find out which type of locale
your product will detect or where it can be set. In a client-
server product, it is important to understand how the product
processes client locales as well as server locales. Programs
can set their own locale environment, sometimes per thread.
Find out where they get this information.

Try different combinations of locales. Set up a system con-
figuration with a single locale throughout all machines and
processes. Then test on a mixed set of locales. For efficiency,
you can rotate locale settings throughout the entire testing
phase of a product instead of testing on the same locale con-
figuration for each test cycle or build. Keep in mind the sam-
pling categories discussed in the section on representative
sampling. Use locales from each of the categories. Combine
locales in different categories on a multilocale setup.

Time zones are separate from locales. While a locale can
indicate a time zone or a set of time zones, the two are not
tied together and must be set separately. Make sure that a
combination of different time zones is used in a client-server
or server-server setting. In individual configurations, rotate
the time zone setting to examine the effect. This easily mimics
what real customers do. Even in the continental United States
there are four time zones, and it is likely that a client will
access a server in a time zone different from his or her own.

Above all, varying charset data must be processed by the
system. Use the representative sampling categories as guides
to select the most appropriate charsets. Plan the data and cre-
ate a small data bank.

DATA PLANNING
Planning the data for your test suites is crucial to good

internationalized testing. Some data may be handled by the

L O C A L I Z A T I O N R E A D E R 2 0 0 4 - 2 0 0 582

system and only displayed, and
some may be input. Know which
data appears in your product and
how it is used. If the product is
new or heavily revised or has
never been localized, include
pseudo-localization as part of the
test plan.

Textual test data needs to
cover all aspects of text process-
ing. Include a wide selection of charac-
ters, punctuation and symbols which
appear in the language. Create long
strings to force word wrap, if relevant.
Sorting and search should always be
included if the product performs these
functions. Text is related to language, so
consider language parameters in pro-
cessing. Create a data bank that you can
reuse. Reusing data isn’t always possi-
ble, but even if the data needs minor
adjustments with new revisions, it can
be much faster than creating fresh data.
Textual data should span a range of lan-
guages planned with the representative
sampling information as a guide.

Numerics are related to locale. Dates
and times should be part of the test, along
with currency, telephone numbers and
units of measure. If there is searching
based on numeric data, such as by date or
price, include this in the test suite.

It is important to review graphics
early on, since they take longer to create
and adjust than text. While they are often not related to prod-
uct function, they are part of the user interface. Make sure
icons, banners, backgrounds, pictures and all other images
are part of the test suites for the user interface before it is
frozen. Colors and window elements, such as buttons and
checkboxes, should also be verified.

Product layout is especially important for localizability.
User interface test suites should check screens, dialog boxes,
pop-up windows and frames for their internal arrangement
and relative screen position. This is best done using a pseudo-
localization, which will be discussed later in this article.

Edge testing is important to expose deficiencies in code
internationalization. Push through minimum and below-mini-
mum values and lengths, exceed maximum values and
lengths. Plan to enter incorrect characters and formats, bad
or mismatched dates and times.

WHAT DO YOU LOOK FOR?
Text. Now that you have your textual data planned and exe-

cuted, what should you look for? Note that in some cases, data
can be constrained by a standard. If you’re not sure, write the
bug. Most often, standards won’t affect these areas.
Remember that text can be affected by both the language set-
ting and the locale setting.

An underlying theme in
looking at resulting data is
that there is not always a
right and a wrong behavior
for internationalization.
Sometimes instead of writ-
ing a code bug, writing a
documentation bug to make
sure the behavior gets docu-
mented makes sense. A

classic example of this is a sort of multi-
lingual data. Unless your product has a
specification for this behavior, the data
may be sorted in several different ways. As
long as it’s sorted in some way, then the
claim of sorting is justified. But the behav-
ior of the sort is best documented in case
a customer has a preconceived notion of

multilingual sort.
Truncation is a frequent occurrence,

especially in localized or pseudo-local-
ized user interface elements. For multi-
byte character data, look for split char-
acters where some of the bytes of a sin-
gle character have been truncated. The
result is often an ASCII character or
some other strange character at the end
of a string. Also, look for obvious length
truncation and vertical truncation.

Provided your system is configured
properly for rendering those charac-
ters, check that the rendering is valid.
Although most products do not do their
own rendering, they often do specify

fonts and point sizes, which can drastically affect the appear-
ance of characters. Be careful with cutting and pasting text, as
it is unreliable from one software product to another, espe-
cially when the text is not in ISO-8859-1 (Latin1).

Different languages have different line wrap rules. Since
some languages have no spaces between words, line wrap
isn’t always obvious. If the product can control wrapping,
check that lines are broken appropriately for the language.
Check the length of the lines as well, since one of the prob-
lems can be determining line length by byte rather than by
font metrics. This can result in either lines that are too short
or some that are so long they get truncated.

Searching text is complex. Different people have different
preferences for how data is matched. For example, a user
who is looking for the French word thé in a body of text with
both English and French probably doesn’t want all the occur-
rences of the English word the. Conversely, a German might
prefer that searching for ander finds both ander and änder.
Another problem is that the search text might be in a different
charset from the body of text being searched or that the
search text might be encoded differently from the body text
(this can happen with Unicode encodings). Know what the
results should be, and document anything which isn’t found.
The best option is to give the user a choice of search style; the

L O C A L I Z A T I O N R E A D E R 2 0 0 4 - 2 0 0 5 83

Truncation resulting from a line wrap problem

Vertical truncation due to insufficient space

Two sorting orders in US English

Telephone Sort Dictionary Sort
A-1 Apples A-1 Apples

A1 Dog Grooming A-1 Roofers

A-1 Roofers A1 Dog Grooming

AMD Security Aaron Tailors

Aaron Tailors All Gone Pest Control

All Gone Pest Control Allen Plumbing

Allen Plumbing Am-Center

Am-Center Ambrosia Caterers

Ambrosia Caterers AMD Security

Azalea Planters Azalea Planters

next best option is to be consistent. Make sure that one or
both of these options are available and that the search behav-
ior is documented.

Sorting is a little more straightforward than searching, but
not much. Every language has at least one sort order, but most
have several. Even in US English, the telephone book sorts dif-
ferently from the dictionary. Understand the type of sort your
product is aiming for and verify that it is appropriate for the
language. Try sorting multilingual data to see how that is han-
dled and verify that the behavior is documented.

If there is any kind of indexing in the product, make sure it
is appropriate for the language. For example, if the product
has a screen with buttons based on the letters of the language,
be sure that for alphabetic languages all letters are included
in the proper order and that for non-alphabetic languages the
index headings make sense and are usable. The problem with
testing this particular layout is that usually a localization is
needed before the problems are detectable. If this is the case,
alert development that this sort of layout can be problematic
and that they should work with the localization team to find
out if the layout is viable. Check other indexing as well, such
as on-line documentation index pages. Again, this may be
testable only after a localization.

Numerics. While text is sensitive to language settings,
numerics are sensitive to locale settings. Keep this in mind
when looking at numeric data.

For large numbers, check that the groupings are appropri-
ate. The amount of numbers per group can change with the
locale, as well as the separators between groups. In Germany,
for example, number groupings are separated by a period,
but in France they’re separated by a space, and in Japan by a
comma. Make sure the correct character is used as the deci-
mal point. Like the groupings separator, it can be a period, a
centered dot, a comma or even a space. The number of digits
following the decimal point may need to change based on
locale.

Dates are formatted in a myriad of ways. Check the shortest
format for the order of day, month and year values. Different
locales use different separators. In longer date forms, check
to see if the day and month names are appropriate for the
locale and if their abbreviations make sense. If the application
works with different types of calendars, such as Hebrew and
Japanese, verify that the dates are accurate and the conver-
sions function correctly. When looking at time values, check
that the hours and minutes separator is appropriate and that
the 12- or 24-hour format is used based on standard locale
preference. Make sure the time value is correct for the time
zone setting.

When verifying currency, be sure not only to verify that the
format is correct, but that the currency symbol does not auto-
matically change with a change of locale setting when there is
an existing value. The reason is that currency denotes an actu-
al value, which can change significantly with a simple change
of currency symbol. Also, check that the field is capable of
expanding, and that it does not require a decimal point and
digits following the decimal. Consider that, for example, on
2004-05-13, the Turkish lira was valued at 1,541,500 to one
US dollar. Obviously, a Turkish lira value needs much more

space to express the same value given in US dollars and does
not need a decimal value.

Units of measure change with the locale, but like currency,
the unit name should not automatically change on existing val-
ues. Measurements are real values, and unit changes affect the
value expressed. Expansion room is also important for mea-
surements, so make sure that there is available space for larg-
er values.

There is an international standard for telephone numbers,
but most people are unaccustomed to seeing their local
phone numbers in the international format:

+ 1 416 872 2372
+ 507 441 2345
+ 852 2345 6789
+ 44 121 123 4567
That is, the plus sign, a space, the country code (optional),

space, region/area code (optional), space, and groupings of
numbers to represent the local telephone number, separated
by spaces.

More likely they will see these numbers as:
(416) 872-2372 (US and Canada)
441-2345 (Panama)
2345 6789 (Hong Kong)
(0121) 123 4567 (UK)
Try typing in several phone number formats and see if the

product rejects any of them or tries to reformat them for
redisplay. Note that current platforms do not have a default
format for telephone numbers by locale.

Take a close look at address formats in your product.
There is no international standard for address formats, and
they vary from country to country. In order to have a workable
set of address entry fields, it’s important that the following is
true:

The name field is labeled clearly. In some places the first
name a person uses is the surname, not a given name.
Labeling the name fields as “First Name” and “Last Name” can
be confusing. This should be called out to the development
team.

Address lines are generic, that is, they are set up as
“Address Line 1,” “Address Line 2” and so on.

The “State/Province” field is not required. In many coun-
tries, these aren’t used.

The postal code area should be labeled “ZIP/Postal Code”
and not simply “ZIP Code” since ZIP codes are specific to the
United States. (Did you know that ZIP is an acronym for
“Zone Improvement Plan”?)

There should be a country field.
Graphics and layout. This area is often overlooked, but it

can have some serious effects on product localizability and
usability. For more information on graphics and layout, see
the presentation “Internationalization in Software Design,
Architecture and Implementation” from the 19th International
Unicode Conference proceedings or from http://developer
.sun.com/dev/gadc/technicalpublications/articles/archi18n.html

Check that there are no images using human figures, body
parts, hand signals or animals. There should not be picture
representations of English words or visual puns. The orien-
tation of maps or geographic region depicted is often

L O C A L I Z A T I O N R E A D E R 2 0 0 4 - 2 0 0 584

biased; make sure that maps are appropriate for your entire
market. Verify that any object in an image has worldwide
meaning, for example, the shape of a telephone. Keep in
mind that graphic designers know as much about interna-
tionalization as you do, maybe less. Make sure to check if
the images are customizable.

Colors should not be used to mean something inherently;
this is important for accessibility as well as for international-
ization. The use of color should be consistent throughout the
product and the documentation. Check to see if the color
scheme is customizable or user-selectable.

Translating the product can expand the user interface
significantly. Look for expansion room in windows and
dialog boxes. If a screen looks crowded, there may be a
problem localizing it. Check to see if any of the layout
structures force a word order dependency such as

. This makes
translation difficult or even impossible.

If you’re testing bidirectionality, check the window layout
for proper right-to-left formatting. Look for quirky behavior of
window objects, particularly horizontal progress bars, image
positioning and anything with an arrow. Sometimes looking at
a screen design in a mirror can bring out some potential
problems with a right-to-left layout.

Make sure that if some windows expand, screen position-
ing does not become a factor. For exam-
ple, if a help window pops up next to the
screen it refers to so that the user can
keep working with the help available,
make sure that expansion of the help win-
dow will not obscure the primary window.
Check to make sure that the rendering
does not rely on certain resolutions. This
can affect text which is set to be very
small, intricate images, and the window
size on the screen. Sometimes it helps to
use a laptop to investigate this area.

Sounds are very culture specific. If
there is language in the sound, it then
becomes language specific. If your prod-
uct has sound, verify that the sounds are
more general, such as a beep, tone or
buzz. Game show buzzers, sirens, ringing
telephones, doorbells and the like are not
universal. For some cultures, sounds can
be offensive. Verify that there is
a way to switch off the sound, and that it
is clearly documented. Check if the
sounds are customizable.

ARE ANY TOOLS AVAILABLE?
Some tools are available that can help with test planning

and code checking. Some are programmatic and others are in
document form. For code-checking there are “lint” style pro-
grams. LingoPort has a tool called Globalyzer, which includes
a development environment as well as filtering and reporting
capabilities. See the LingoPort Web site (http://lingoport.com)
for more information.

Talk to your internationalization and localization groups or
vendors to find out if there are any home-grown tools avail-
able. Take a look at the Sun Globalization Resources Web site
for periodic updates to tools offerings.

Pseudo-localization is the practice of automatically “trans-
lating” all the software resources. The “translation” can be
something as simple as adding a few accented characters to
the front and back of the string to as complicated as changing
every ASCII letter to another character which looks like that
ASCII letter. Pseudo-localization helps in several ways:

It tests whether or not the product will pick up the translat-
ed resources, providing the pseudo-localization is configured
as a real localization will be.

It helps determine whether all relevant resources have
been made localizable, as long as the user interface is thor-
oughly reviewed.

It can reveal problems due to externalized messages which
should not have been made localizable.

It checks that locale-sensitive elements such as date for-
mats are changed automatically to match the locale setting, as
opposed to being a change that needs to be made manually in
a resource file.

It helps verify that a particular charset (or a subset thereof)
will display properly.

It helps check the expansion capabilities of the user inter-
face, and may help with some edge test-
ing, since string expansion is a by-prod-
uct of pseudo-localization.

It can help with layout checking.
Note that it may also be useful to pseu-

do-localize your test input data.
In preparation for testing, a data bank

should be created with data in various
charsets based on the representative
sampling you have chosen. Make sure to
create files that are large enough to
cover stress and performance testing.

The Sun Internationalization
Requirements Taxonomy is a useful tool
for helping design some tests and for
recording the results. At test design time,
take a look at the matrix checklist form
and check the individual fields to provide
information on testing the different areas
represented by the matrix.

Before deciding on any test automa-
tion tools, verify their international capa-
bilities. If you standardize on a tool that
can handle only ASCII or Latin1, then it is

not sufficient for testing the product. Even if you’re used to
selecting a tool that has shortcomings, not being able to test
over half the data your product is supposed to handle is more
than a shortcoming and can cost a great deal for each test
cycle used.

When evaluating a tool, simply asking the tool makers
about their tool’s internationalization capabilities alone is not
a good approach. You may ask them, but bear in mind that a)
they want to sell the tool to you, and b) they don’t know what

L O C A L I Z A T I O N R E A D E R 2 0 0 4 - 2 0 0 5 85

More information can be found at the Sun
Globalization Resources Web site:
http://developer.sun.com/techtopics/global
Other useful Web sites:
http://www.unicode.org/cldr — This site shows
the locale-specific data formats from the
Common Locale Data Repository, with compar-
isons of the different platforms
http://www.unicode.org — The Unicode Web
site, lots of useful information
http://www.w3.org/International — The W3C I18n
Web site, Web standards and recommendations
E-mail lists:
i18n-prog@yahoogroups.com — For general
i18n questions, http://groups.yahoo.com
unicode@unicode.org — For Unicode questions,
http://www.unicode.org/consortium/distlist.html
www-international@w3.org — For Web i18n
questions, http://lists.w3.org/Archives/Public
You must first subscribe to the list before you
can send e-mail to it. See the relevant Web site
for subscription information.

For More Information

you mean by internationalization. Instead, ask detailed ques-
tions about specific charsets, locales, screen comparisons,
throughput and so on. Then try out the tool. If you find tools
that have some internationalization capabilities, please tell me
about them so I can document them for others.

WHAT SHOULD I TELL MY GROUP?
The number-one point to take back to your group is that

existing tests should be internationalized, which is the
most time-efficient, cost-effective way to maximize your test

coverage. No one knows how to test your product better
than your own test team, and with a few incremental
changes you can verify the quality for
all your customers worldwide. �

Andrea Vine is an internationalization
architect for Java Enterprise System at Sun
Microsystems. She can be reached at
andrea.vine@sun.com.

The author thanks Bob Silva for his edits.

L O C A L I Z A T I O N R E A D E R 2 0 0 4 - 2 0 0 586

