Seminar 3: Testing CIP and UIP in Eviews

The principal aims of this seminar are to:

- Demonstrate misspecification testing in *Eviews*.
- Demonstrate the use of alternative estimators in *Eviews*.

To achieve these aims you will estimate CIP and UIP relationships for the UK/US foreign exchange market using OLS initially. Then you will subject the model to rigorous misspecification testing (testing whether the assumptions of the Classical Linear Regression Model (CLRM) are compatible with the observed data). This will include tests for:

- Heteroscedasticity.
- Autocorrelation.
- Incorrect functional form.
- Structural instability.
- Endogenous regressors.

The evidence for an endogenous regressor will lead you to re-estimate the model using an Instrumental Variable Estimator (IVE). The session will culminate with the estimation of a Generalized Method of Moments (GMM)/IV model to take account of both the endogenous regressor and heteroscedasticity/autocorrelation in the errors.

The learning outcomes from this analysis will be to develop your understanding of:

- Misspecification testing in *Eviews*.
- The importance of misspecification testing as part of any econometric analysis.
- The consequences of violations of different assumptions of the CLRM.
- Remedies for these violations including the use of alternative (non-OLS) estimators.
- How (and when) to implement these remedies/procedures in *Eviews*.

The data for this exercise are in the file **cip_sem3.wf1** which I sent to you in an email. These data will allow you test both CIP and UIP relationships. This handout goes through the analysis for the CIP relationship in detail. Please attempt the estimation and testing for the UIP relationship in your own time to test your understanding of this analysis. For background on the CIP/UIP relationships read Cuthbertson and Nitzsche (2004) Chapters 24.3, 24.4, 25.1 and 25.2 (and see lecture 4). Further background on IVE can be found in Verbeek Chapter 5.

1. Initial Estimation using OLS

Create a variable for the (log) 3 month forward premium:

Click *Genr* on the workfile toolbar and type in:

fp_3m=log(uk_3mfrate)-log(uk_spot_rate)

Estimate the CIP relationship by OLS:

Click <i>Quick/Estimate Equation</i> on the main toolbar and type in:					
fp_3m c uk_3mtbills-us_3mtbills					
Dependent Variable: FP_3M					
Method: Least Squares Date: 02/04/07 Time: 21:23 Sample: 5/10/2001 9/30/2005 Included observations: 1147					
Variable	Coefficient	Std. Error t-Statistic	Prob.		
С	-0.00726	0.000422 -17.20141	0		
UK_3MTBILLS-US_3MTBILLS	0.949718	0.016855 56.34583	0		
R-squared	0.734945	Mean dependent va	0.01585		
Adjusted R-squared	0.734713	S.D. dependent var	0.006551		
S.E. of regression	0.003374	Akaike info criterion	-8.543509		
Sum squared resid	0.013037	Schwarz criterion	-8.534712		
Log likelihood	4901.702	F-statistic	3174.853		
Durbin-Watson stat	1.458456	Prob(F-statistic)	0		

In your own time, repeat the estimation for the UIP relationship. The dependent variable for UIP is the <u>3 month</u> (12weeks×5days=60day) holding period return on sterling:

Click *Genr* on the workfile toolbar and type in:

uk_spot_3m=log(uk_spot_rate(60))-log(uk_spot_rate)

2. Misspecification testing

The background on these tests can be found in your notes for lecture 3 (and the references therein). Be sure to repeat these tests later for the UIP OLS model.

i.) White test for heteroscedasticity

There is no difference between the tests respectively with and without 'cross terms' in this case because there is only one regressor in the CIP model.

Click <i>View/Residual Tests/White Heteroskedasticity (cross terms)</i> on the equation toolbar:				
White Heteroskedasticity Test:				
F-statistic Obs*R-squared	3.970368 7.906678	Prob. F(2,1144) Prob. Chi-Square(2)	0.019127 0.019191	
Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 02/04/07 Time: 21:27 Sample: 5/10/2001 9/30/2005 Included observations: 1147				
Variable	Coefficient	Std. Error t-Statistic	Prob.	
C UK_3MTBILLS-US_3MTBILLS (UK_3MTBILLS-US_3MTBILLS)^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-9.53E-06 0.001787 -0.036016 0.006893 0.005157 1.94E-05 4.28E-07 10822.06 1.907598	7.48E-06 -1.27328 0.000635 2.813587 0.013064 -2.756996 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	0.2032 0.005 0.0059 1.14E-05 1.94E-05 -18.86498 -18.85178 3.970368 0.019127	

Q: What do you infer from the results of this test?

Q: What are the consequences of your findings for your previous OLS estimates of CIP?

ii.) Breusch-Godfrey LM test for autocorrelation

Click View/Residual Tests/Serial Correlation LM Test on the equation toolbar:						
Breusch-Godfrey Serial Correlation LM Test:						
F-statistic Obs*R-squared	80.44297 141.5279	Prob. F(2,1143) Prob. Chi-Square(2	0 0			
Test Equation: Dependent Variable: RESID Method: Least Squares Date: 02/04/07 Time: 21:29 Sample: 5/10/2001 9/30/2005 Included observations: 1147 Presample missing value lagged	residuals set	t to zero.				
Variable	Coefficient	Std. Error t-Statistic	Prob.			
C UK_3MTBILLS-US_3MTBILLS RESID(-1) RESID(-2)	4.14E-06 -0.000162 0.207766 0.232529	0.0003960.0104780.015795-0.0102370.0287687.2221370.0287698.082623	0.9916 0.9918 0 0			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.12339 0.121089 0.003162 0.011428 4977.228 2.114047	Mean dependent va S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	-1.99E-18 0.003373 -8.671714 -8.654121 53.62865 0			

Q: What do you infer from the results of this test?Q: What are the consequences of your findings for your previous OLS estimates of CIP?

iii.) Ramsey's RESET test for incorrect functional form

The Eviews version of this test regresses the dependent variable on the original regressors and the fitted terms. Sometimes the test is carried out by regressing the model <u>residuals</u> on the original regressors and fitted terms. The two versions of the test are equivalent.

Including 2 fitted terms will test the null of a linear functional form against the alternative of a cubic functional form

Click View/Stability Tests	Ramson	RESET Tost on the	equation :	toolbar
Click view/stability resis/Ramsey RESET test on the equation tooloar.				
Number of Fitted Terms:	2			
Ramsey RESET Test:				
F-statistic	31.97472 62 44229	Prob. F(2,1143) Prob. Chi-Square(2	0	
	02.44220		Ū	
Test Equation: Dependent Variable: FP_3M				
Method: Least Squares Date: 02/04/07 Time: 21:32 Sample: 5/10/2001 9/30/2005 Included observations: 1147				
Variable	Coefficient	Std. Error t-Statistic	Prob.	
C UK_3MTBILLS-US_3MTBILLS FITTED^2 FITTED^3	-0.001262 0.592863 1.963279 389.9774	0.003222-0.3916010.2729552.17201921.043780.093295463.14320.842023	0.6954 0.0301 0.9257 0.4	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.748988 0.74833 0.003287 0.012346 4932.924 1.537418	Mean dependent va S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	0.01585 0.006551 -8.594461 -8.576868 1136.858 0	

Q: What do you infer from the results of this test?

Q: What are the consequences of your findings for your previous OLS estimates of CIP?

iv.) CUSUM/CUSUMSQ tests (for parameter instability)

Q: What do you infer from the results of this test?

Q: What are the consequences of your findings for your previous OLS estimates of CIP?

v.) Durbin-Wu-Hausman test (for endogenous regressors) (see e.g., Gujarati 19.4 and Verbeek 5.3)

Suppose the model is given by

$$Y_t = \beta_1 + \beta_2 X_{2t} + \varepsilon_t$$

The investigator suspects the regressor is endogenous: $cov(X_{2t}, \varepsilon_t) \neq 0$. However, the investigator also has a set of <u>instrumental variables (IVs)</u> which are correlated with X_2 but uncorrelated with ε (i.e., they are exogenous). To test his/her suspicions that X_2 is endogenous the investigator carries out the following procedure

Step 1: Regress X_2 on the IVs:

$$X_{2t} = \pi_1 + \pi_2 Z_{2t} + \dots + \pi_m Z_{mt} + v_t$$

Obtain the residuals \hat{v}_t .

Step 2: Regress *Y* on X_2 and \hat{v}

$$Y_{2t} = \beta_1 + \beta_2 X_{2t} + \lambda \hat{v}_t + \varepsilon_t$$

Perform a *t*-test on the coefficient of \hat{v} (test H_0 : $\lambda = 0$). If the <u>null is not rejected</u> then this provides evidence that X_2 is exogenous; if the <u>null is rejected</u> then it suggests X_2 is <u>endogenous</u>.

This procedure is part of a general testing procedure known as a <u>Hausman test</u>. In this particular context, the intuition is that if X_2 is exogenous then <u>both</u> OLS <u>and</u> 2SLS are consistent (both the estimators converge to the <u>same</u> value - β_2 - in large samples). However if X_2 is endogenous then <u>only the 2SLS estimator converges on β_2 </u> (because OLS is inconsistent): therefore the <u>difference</u> between the OLS and 2SLS estimators of β_2 is non-zero in large samples if X_2 is endogenous. The coefficient λ measures this difference so if λ is statistically significant then it suggests X_2 is endogenous.

Another way of thinking about it is that \hat{v} measures the stochastic component of X. If X is exogenous this stochastic component is uncorrelated with Y $(\operatorname{cov}(Y, v) = \operatorname{cov}(\varepsilon, X_2) = 0 \Longrightarrow \lambda = 0).$

Now we will apply the Hausman test to the CIP model.

Step 1: Regress the interest differential on the exogenous/instrumental variables. Use UK and US GDP growth as instruments.

Click *Quick/Estimate Equation* on the main toolbar and type in:

uk_3mtbills-us_3mtbills c log(uk_gdp)-log(uk_gdp(-1)) log(us_gdp)-log(us_gdp(-1))

Dependent Variable: UK_3MTBILLS-US_3MTBILLS Method: Least Squares Date: 02/04/07 Time: 10:32 Sample (adjusted): 5/10/2001 9/30/2005 Included observations: 1147 after adjustments

C 0. LOG(UK GDP)-LOG(UK GDP(-1)) 0.	.021028	0.000308	68.28002 0.663112	0 0.5074
LOG(US_GDP)-LOG(US_GDP(-1)) 30	0.36716	2.396153	12.6733	0
R-squared0.Adjusted R-squared0.S.E. of regression0.Sum squared resid0.Log likelihood43Durbin Watson stat0.	0.123163 0.12163 0.005542 0.035142 333.019	Mean de S.D. dep Akaike in Schwarz F-statisti	ependent va pendent var nfo criterion c criterion c	0.024334 0.005914 -7.550163 -7.536968 80.34477

Save the residuals:

Click *Proc/Make Residual Series* on the equation toolbar.

Name for residual series: resid_haus

Step 2: Regress the 3 month forward premium on the interest differential and resid_haus

Click *Quick/Estimate Equation* on the main toolbar and type in:

fp_3m c uk_3mtbills-us_3mtbills resid_haus

Dependent Variable: FP_3M Method: Least Squares Date: 02/04/07 Time: 10:39 Sample (adjusted): 5/10/2001 9/30/2005 Included observations: 1147 after adjustments

Variable	Coefficient	Std. Error t-Statistic	Prob.
C	-0.010745	0.001168 -9.197338	0
UK_3MTBILLS-US_3MTBILLS	1.092911	0.047836 22.84721	0
RESID_HAUS	-0.163305	0.051085 -3.196747	0.0014
R-squared	0.737291	Mean dependent var	0.01585
Adjusted R-squared	0.736832	S.D. dependent var	0.006551
S.E. of regression	0.003361	Akaike info criterion	-8.550659
Sum squared resid	0.012922	Schwarz criterion	-8.537464
Log likelihood	4906.803	F-statistic	1605.317
Durbin-Watson stat	1.473166	Prob(F-statistic)	0

Q: What do you infer from the results of this test?

Q: What are the consequences of your findings for your previous OLS estimates of CIP?

Q: What is a possible solution?

3. Two-Stage Least Squares Model

A possible solution to the endogeneity found in the CIP model is to estimate the relationship using an IV estimator such as 2SLS (see lecture 4). This is estimated in *Eviews* as follows:

Click <i>Quick/Estimate Equation</i> on the main toolbar. Select Method: TSLS					
Type into the <i>Equation sp</i>	Type into the <i>Equation specification</i> dialog box:				
fp_3m c uk_3mtbills-us_3	mtbills				
Type into the <i>Instrument</i> I	list:				
log(uk_gdp)-log(uk_gdp(-	1)) log(us_gdp)-log(us_gdp(-1))				
Dependent Variable: FP_3M Method: Two-Stage Least Squar Date: 02/04/07 Time: 11:07 Sample (adjusted): 5/10/2001 9/3 Included observations: 1147 afte Instrument list: LOG(UK_GDP)-L -LOG(US_GDP(-1))	es 30/2005 r adjustments .OG(UK_GDP(-1)) LOG(US_GDP)				
Variable	Coefficient Std. Error t-Statistic Prob.				
C UK_3MTBILLS-US_3MTBILLS	-0.010745 0.001209 -8.884795 1.092911 0.049518 22.07082	0 0			
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.718237 Mean dependent va 0.015 0.717991 S.D. dependent var 0.0065 0.003479 Sum squared resid 0.0138 1.372406 Second-stage SSR 0.0435	85 51 59 29			

Q: Compare the 2SLS point estimates with the previous OLS estimates. Why are they different?

Q: Are the inferences in this model (*t*-stats) valid? If not, why not?

4. GMM/IV Model

The 2SLS point estimates are valid (unlike the OLS estimates) given the endogeneity of the interest differential. However <u>inferences</u> in the 2SLS model are still invalid because of the heteroscedasticity and autocorrelation problems found earlier. Therefore we will finish the session by estimating a GMM/IV model with a Newey-West <u>H</u>eteroscedasticity and <u>A</u>utocorrelation <u>C</u>onsistent (HAC) variance-covariance matrix. The GMM estimator weights the sample moments using the inverse of the variance-covariance matrix of the sample moments (see lecture 4). Estimating this variance-covariance matrix with a Newey-West estimator ensures it is estimated consistently in the presence of heteroscedasticity and autocorrelation.

Click <i>Quick/Estimate Equ</i> Select Method: GMM	<i>uation</i> on the	e main toolbar.			
Type into the <i>Equation sp</i>	pecification (dialog box:			
fp_3m c uk_3mtbills-us_3	3mtbills				
Type into the <i>Instrument</i>	list:				
log(uk_gdp)-log(uk_gdp(-1)) log(us_	gdp)-log(us_gdp(-	1))		
By default the weighting in need to change the 'kerne autocorrelations – see lect	matrix is Tin l' options (th ture 4). The	ne-Series HAC (as ne default is to use refore just click 'O	desired) and th Bartlett weight K':	ere is also no s for the	
Dependent Variable: FP_3M Method: Generalized Method of Date: 02/04/07 Time: 21:18 Sample (adjusted): 5/10/2001 of Included observations: 1147 af Kernel: Bartlett, Bandwidth: Fi Simultaneous weighting matrix Convergence achieved after: 3 Instrument list: LOG(UK_GDP) -LOG(US_GDP(-1))	of Moments 9/30/2005 fter adjustments xed (6), No pre & coefficient it weight matrice)-LOG(UK_GDI	s ewhitening eration es, 4 total coef iteratior P(-1)) LOG(US_GDP)	IS		
Variable	Coefficient S	Std. Error t-Statistic	Prob.		
C UK_3MTBILLS-US_3MTBILLS	-0.010432 5 1.079274	0.002108 -4.948753 0.085354 12.64472	0 0		
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.721259 0.721016 0.00346 1.387221	Mean dependent va S.D. dependent var Sum squared resid	0.01585 0.006551 0.01371 0.000482		
	Name this equ CIP_GMM. 1	nation This will save the		The J-statistic statistic which test the validity instrumental va below).	is an important will be used to y of the ariables (see
	equation in yo future reference	our workfile for ce (see below).		L	

Q: Compare the *t*-stats for the 2SLS and GMM models. What effect has the use of the Newey-West HAC variance-covariance matrix had on inferences in the CIP model?

Sargan Test of instrumental validity (see Verbeek 5.5.3)

The GMM/IV estimators are based on the assumption that the instruments are uncorrelated with the error term: $E(Z'\varepsilon) = 0$ (see lecture 4). It is important to test this assumption since if it does not hold then the GMM/IV estimators are inconsistent. In this context, the Sargan test is based on the following statistic:

$$T\left(\frac{1}{T}\hat{\varepsilon}^{\prime}Z\right)W_{T}\left(\frac{1}{T}Z^{\prime}\hat{\varepsilon}\right) = TJ_{T}\left(\hat{\beta}_{GMM}\right)$$

Recall from lecture 4 that GMM chooses $\hat{\beta}_{GMM}$ to minimize the following objective function: $(T^{-1}\hat{\varepsilon}'Z)W_T(T^{-1}Z'\hat{\varepsilon})$. The statistic $J_T(\hat{\beta}_{GMM})$ (the 'J' statistic: see GMM estimation output above) is therefore simply the minimized value of this objective function. If the instruments are uncorrelated with the errors then the sample moment restrictions $(T^{-1}Z'\hat{\varepsilon})$, and hence the J-statistic, should be close to zero. In fact, under the null hypothesis that the instruments are uncorrelated with the errors, the Sargan test has the following distribution:

$$TJ_T(\hat{\beta}_{GMM}) \sim \chi^2(m-k)$$

From the above null distribution it is apparent that the <u>Sargan test is only valid</u> when the <u>number of instruments (m) is greater than the number of endogenous variables (k)</u> (i.e., when the model is over-identified). This is why the Sargan test is often referred to as a test of <u>over-identifying restrictions</u>. If the model is just/exactly identified (m=k) the J-statistic equals zero by construction and so is uninformative about whether the population moment conditions are true.

If the Sargan test rejects the null then it suggests that some or all of the instruments are invalid (i.e., they are correlated with the error term). In that case we will need to think of re-estimating the model using a different set of instruments.

Now implement the Sargan test in Eviews. <u>The following commands assume you have</u> saved the GMM equation in your workfile and named it **cip_gmm**:

Test the CIP restrictions

The GMM model has remedied the problems in the OLS model caused by the endogenous regressor and invalid inferences due to heteroscedasticity/autocorrelation in the errors. We can therefore more confidently test the CIP restrictions in the GMM model than we could in the OLS model. The final piece of analysis is therefore to test the CIP restrictions in the GMM model (intercept=0 and slope coefficient=unity):

Click <i>View/Coefficient</i> toolbar.	Tests/Wald Coefficient Res	strictions on the GMM equation
Type in: c(1)=0, c(2)=2	l	
Wald Test: Equation: CIP		
Test Statistic Value	df Probability	
F-statistic 1206.57 Chi-square 2413.15	3 (2, 1145) 0 5 2 0	
Null Hypothesis Summary:		
Normalized Restriction (= 0)	Value Std. Err.	
C(1) -1 + C(2)	-0.010432 0.002108 0.079274 0.085354	Q: What do you infer about the CIP relationship based on this test?
Restrictions are linear in coef	icients.	

Conclusions

The OLS model for CIP suffered from a number of problems: heteroscedasticity; autocorrelation; incorrect functional form, parameter instability; and an endogenous regressor. Accordingly no reliance can be placed on either the point estimates or inferences from this model.

Re-estimation of the model using GMM/IV with a Newey-West HAC variancecovariance matrix provides remedies for the problems of endogeneity (which leads to biased/inconsistent point estimators in the OLS model) and heteroscedaticity/autocorrelation (which leads to invalid inferences in the OLS model). The Sargan test suggests that the instruments (UK and US GDP growth) used in the GMM/IV model are uncorrelated with the error term. Therefore they are valid instruments for estimating the model.

Finally, the GMM/IV model rejects the coefficient restrictions implied by CIP. This suggests it may be possible to earn abnormal riskless profits from covered interest arbitrage. However no account has been taken of transactions costs so it's unclear whether this is evidence of a violation of the EMH (see lecture 4, Appendix 2 for an interpretation of a CIP equation; see also Cuthbertson and Nitzsche 25.1 for criticisms of regression tests of CIP).

References

Cuthbertson and Nitzsche (2004). *Quantitative Financial Economics*. Second Edition. Wiley: Chichester. Verbeek (2004). *A Guide to Modern Econometrics*. Second Edition. Wiley: Chichester.