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The purpose of this study is to examine left-turn crash injury severity. Left-turning traffic colliding with
opposing through traffic and with near-side through traffic are the two most frequently occurring con-
flicting patterns among left-turn crashes (Patterns 5 and 8 in the paper, respectively), and they are prone
to be severe. Ordered probability models with either logit or probit function is commonly applied in crash
injury severity analyses; however, its critical assumption that the slope coefficients do not vary over dif-
ferent alternatives except the cut-off points is usually too restrictive. Partial proportional odds models are
generalizations of ordered probability models, for which some of the beta coefficients can differ across
alternatives, were applied to investigate Patterns 5 and 8, and the total left-turn crash injuries. The results
show that partial proportional odds models consistently perform better than ordered probability models.
By focusing on specific conflicting patterns, locating crashes to the exact crash sites and relating approach
variables to crash injury in the analysis, researchers are able to investigate how these variables affect
left-turn crash injuries. For example, opposing through traffic and near-side crossing through traffic in
the hour of collision were identified significant for Patterns 5 and 8 crash injuries, respectively. Protected
left-turn phasing is significantly correlated with Pattern 5 crash injury. Many other variables in driver
attributes, vehicular characteristics, roadway geometry design, environmental factors, and crash charac-
teristics were identified. Specifically, the use of the partial proportional formulation allows a much better
identification of the increasing effect of alcohol and/or drug use on crash injury severity, which previously
was masked using the conventional ordered probability models.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction whereas the percentage of injury crashes was only 50.1% for all

other crashes.

Intersections are among the most dangerous locations of a road-
way network. In the state of Florida, 43.1% of fatalities and serious
injuries occurred at or were influenced by intersections (Florida
Department of Transportation, 2006). In the U.S., although only
around 10% of all intersections are signalized, in 2005, nearly 30%
(2744) of intersection fatalities occurred at signalized intersections
(Rice, 2007). Left-turn crashes occur frequently and they account
for a high percentage of total crashes at signalized intersections.
They are prone to be severe, possibly due to the relatively high con-
flicting speeds of involved vehicles and the angle of impact. In a
sample of signalized intersections collected in Orange and Hillsbor-
ough counties in Florida, 64.2% of left-turn crashes involved injury,
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From 2002, a series of crash frequency studies have been
conduced in Florida to identify the crash profiles for the major inter-
section types (Abdel-Aty and Wang, 2006; Wang and Abdel-Aty,
2006,2007,2008; Wang et al., 2006). In one study, Wang and Abdel-
Aty (2008) investigated conflicting flows, intersection geometric
design features, and traffic control and operational features on left-
turn crash occurrence. Left-turn crashes were classified into distinct
conflicting patterns (i.e., left-turn traffic colliding with opposing
through traffic, or with near-side through traffic, etc.), and then the
crash frequencies of different patterns were modeled. The studies
indicate there are obvious differences in the factors which corre-
lated with different left-turn collisions. However, crash frequency
studies model accumulated crash counts, which ignores the dif-
ference of severe and minor crashes. Therefore, they are unable to
investigate how specific features affect crash injury severity.

The left-turn crashes at signalized intersections result in a huge
cost to society in terms of death, injury, lost productivity, and prop-
erty damage. However, how the different factors affect left-turn
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crash severity is still not clear. For example, traffic volume has
been identified as the most significant factor affecting crash occur-
rence (Wang and Abdel-Aty, 2008), but it is not clear whether traffic
flow affects crash severity. Left-turn phase has been identified to
be significant for left-turn crash occurrence, but no study investi-
gates its influence on crash severity. The purpose of this study is to
investigate how traffic characteristics, driver attributes, vehicular
characteristics, roadway geometry features, environmental factors,
and crash characteristics affect left-turn crash injury severity.

In police reports, crash injury is categorized into five levels
based on the most serious injury to any person involved in a crash:
no injury, possible injury, non-incapacitating injury, incapacitating
injury and fatal injury. Multinomial logit models were speci-
fied for multiple alternatives of severity. Shankar and Mannering
(1996) considered environmental, roadway, vehicular, and rider
characteristics in their multinomial logit analysis of motorcycle-
rider severity on single-vehicle motorcycle crashes. Carson and
Mannering (2001) developed multinomial logit models to examine
the effect of ice-warning signs on crash severity for different road-
way functional classes. Ulfarsson and Mannering (2004) explored
differences in severity between male and female drivers in single
and two-vehicle collisions; separate multinomial logit models of
severity were estimated for male and female drivers. However, the
logit model’s assumption of independent errors for each alternative
is inconsistent with the fact that the alternatives for crash injuries
are ordered. With ordered alternatives, one alternative is similar to
those close to it and less similar to those further away (Train, 2003).

Nested logit, mixed logit, or probit models can be applied to
account for the pattern of similarity and dissimilarity among dif-
ferent injury levels. Abdel-Aty (2003) compared the multinomial
logit, nested logit, and ordered probit models for driver’s injury
severity at toll plaza and found that nested logit model produced
the best fit. However, Train (2003) thinks such a specification does
not actually fit the structure of the ordinal data.

Considering that severe crashes are comparatively less frequent
(especially fatal crashes) and also for simplicity, some researchers
collapsed the five level injury data into fewer levels. The binary logit
or probit model can be used when severity is classified into two
levels. Al-Ghamdi (2002) applied the binary logit model to examine
the effect of crash characteristics on fatal and non-fatal injury and
found that crash location and cause of crash were significant. Huang
etal. (in press)and Obeng (2007) applied the binary logit to analyze
crash injury of signalized intersections. But combining adjoining
categories in ordered categorical regression could lose efficiency in
estimating regression parameters (Train, 2003).

The main characteristic of crash injury data, from a mod-
eling perspective, is that the responses are inherently ordered
multiple-choice variables. Ordered logit and probit models have
been commonly applied to fit the ordinal data structure of injury
severity. By using the ordered probit model, O’'Donnell and Connor
(1996) investigated how variations in the attributes of road users
can lead to variations in the probabilities of sustaining different
levels of injury in motor vehicle crashes. Ma and Kockelman (2004)
used the ordered probit model to predict severity based on fac-
tors including traffic, roadway and occupant characteristics and
weather conditions at the time of a crash and type of vehicle.
Khattak (2001) applied the ordered probit model to examine injury
of multi-vehicle rear-end crashes. Abdel-Aty (2003) applied the
ordered probit model to predict crash severity on roadway sections,
signalized intersections and toll plazas by using the Florida crash
database. Abdel-Aty and Keller (2005) created the ordered probit
models by using roadway attributes and crash types for crashes
occurred at the signalized intersections.

Ordered probability models are straightforward because they
impose the restriction that regression parameters (except cut-off

points) are the same for different severity levels. This is called
parallel-lines assumption, or proportional odds assumption. How-
ever, for injury severity, it is not clear whether distances between
adjacent injury levels are equal. It is too arbitrary to assume that
coefficients of ordered probability models are the same except
for cut-off points. The parallel-lines constraint can be relaxed for
all variables, but estimating more parameters than necessary will
also cause some variables to be insignificant. Considering that the
assumption may be violated only by one or a few of the included
variables, Peterson and Harrell (1990) proposed a partial pro-
portional odds model, where parallel-lines constraint is relaxed
only for those variables when it is not justified and allows non-
proportional odds for a subset of the explanatory variables. To have
more parsimonious layout, they used a gamma parameterization
of partial proportional odds model.

Analyzing left-turning traffic is crucial for improving intersec-
tion operation and safety. Left-turn crashes are not all identical
with respect to the maneuvers of the involved vehicles (vehicle
movement and travelling direction). Left-turning traffic may col-
lide with many other traffic flows at signalized intersections, and
left-turn crashes have many distinct conflicting patterns in vehicle
maneuvers before collisions. Wang and Abdel-Aty (2008) classified
left-turn crashes into nine distinct conflicting patterns, and then
the crash frequencies of different patterns were modeled. Pattern
5 is for those left-turn crashes of which one involved vehicle was
turning left and another vehicle was going straight on the oppos-
ing approach. Pattern 8 is for left-turning vehicles colliding with
vehicles going through from the near-side crossing approach. These
are the most frequently occurring collision patterns, accounting for
72.5% and 14.1% of all left-turn crashes, respectively, and they are
prone to be severe.

In summary, there have been numerous studies analyzing crash
injury severity. However, only limited studies examined crash
injury severity at signalized intersections (Abdel-Aty, 2003; Abdel-
Aty and Keller, 2005; Huang et al., in press; Obeng, 2007), and in
previous studies, crashes were not located to the exact sites they
occurred. Therefore, the previous approach is unable to associate
crash injury to features of related approaches. There is no study
investigating injury severity for left-turn crashes specifically. In
addition, most severity analyses depended on crash data in which
most intersection attributes are not available (i.e., turning move-
ments, signal phase, left-turn offset, etc.). However, these are the
only viable factors traffic engineers have some control over. In
this study, left-turn crash injury severity for Patterns 5 and 8, and
total left-turn crashes are investigated using partial proportional
odds models. Left-turn crashes are located to the crash sites where
they occurred, which enables researchers to specify the effect of
attributes of intersection geometric design features, traffic con-
trol and operational features, and traffic characteristics on crash
severity.

2. Methodology: partial proportional odds models

Crash injury severity is categorized into five levels in increasing
of severity and coded as: 1=no injury, 2 = possible injury, 3 =non-
incapacitating injury, 4 = incapacitating injury, and 5 =fatal injury.
Note that level j=1 is defined as the minimum value of the vari-
able, no injury. Let Y; denotes the recorded crash injury for crash i.
Ordered logit and probit models can be derived based on the level
of an unobserved variable (Train, 2003; Washington et al., 2003).
A critical assumption of the ordered probability models is that the
slope coefficients do not vary over different alternatives except the
cut-off points. This parallel-lines assumption could be violated in
many cases. A generalized ordered logit model can be specified to
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relax parallel-lines assumption for all variables and the probability
of crash injury for a given crash can be specified as

) , exp(e; — X! ;) )
P(Yx>])—g(xiﬂ1)—mv j=1,2,3,4 (1)
where X; is a p x 1 vector containing the values of crash i on the
full set of p explanatory variables, §;j is a p x 1 vector of regression
coefficients, a; represents cut-off point for the jth cumulative logit.
The only difference between this model and the ordered logit model
is that $ is not fixed across equations.

Considering that the parallel-lines assumption may be violated
only by one or a few variables, a partial proportional odds model
can be specified, for which one or more Ss differ across equations
and others can be the same for all equations. Peterson and Harrell
(1990) proposed a gamma parameterization of partial proportional
odds model with logit function as below:

N ey explog — (X6 + Tiy;)
P(Y; > j) =g(X{Bj) = T+ expla — (X8 + 1)) (2)

where T; is a g x 1 vector, q <p, containing the values of crash i
on that subset of the p explanatory variables for which the pro-
portional odds assumption is not assumed, and y; is a g x 1 vector
of regression coefficient associated only with the jth cumulative
logit. In the model, each explanatory variable has one S coefficient,
k — 2y coefficients, where k is the number of alternatives (in this
study, k=5). There are k — 1« coefficients reflecting cut-off points.
The y coefficients represent deviations from proportionality. This
gamma parameterization combines all the features of the tradi-
tional ordered models while allowing for non-proportionality in
some or all of the variables in the model. If all the gammas are equal
to zero, it is actually a proportional odds model. The gamma param-
eterized partial proportional odds model with a probit function can
be expressed as

P(Y; > j) = g(X{B;) = Play — (X; B + Tiyj)] (3)

Partial proportional odds models can be fitted by a user-written
program gologit2 (Williams, 2006). It should be cautious for inter-
preting the coefficients of intermediate categories. The sign of
does not always determine the direction of the effect of the inter-
mediate outcomes (Washington et al., 2003; Wooldridge, 2002).
The marginal effects are useful for interpretation of the variables.
In Stata (2005), for continuous variables, the derivative is calcu-
lated numerically; for dummy variable, a difference rather than
the derivative is computed. Ordered probability models and partial
proportional odds models with different functions (logit or probit)
are not nested. Pseudo R? measure R =1 — (InL/InLy) and Akaike’s
information criterion AIC=-2 InL+2p are applied to evaluate mod-
els’ performance, where InL and In Ly are the log-likelihood in the
fitted and intercept-only models, and p is the number of parame-
ters estimated. Pseudo R? coincides with an interpretation of linear
model R squared (Cameron and Trivedi, 1998). Smaller AIC indicates
a better-fitting model (Stata, 2005).

Table 1

3. Data preparation

Information on intersection geometry design features, traffic
control and operational features, traffic flows, and crashes from
2000to0 2005 were obtained for 197 four-legged signalized intersec-
tions from Orange and Hillsborough counties in the Central Florida
area. Geometric design features for the intersection approach
include the number of through lanes, the number of left-turn lanes
and whether they were exclusive, the presence of median, whether
it had exclusive right-turn lanes, the types of left-turn lane offset
(negative, zero, or positive offset), the direction of each intersec-
tion roadway, and the angle of intersecting roadways. Traffic control
and operational features were retrieved by inspecting signal plans
provided by the county traffic engineering departments. The types
of left-turn control include “permissive”, “compound” (“permis-
sive/protected” or “protected/permissive”), and “protected”. The
key factors for signal phases, i.e., yellow time, and all-red time for
through and left-turn (if protected) movements were retrieved. The
speed limit for each approach was also obtained.

In both counties, the approach movements (right-turn, through,
and left-turn) for both morning and afternoon peak hours were
counted for a year during the study period. The approach daily
turning movements were derived from the approach AADT and the
proportion of approach turning movements. The real traffic vol-
ume in the hour of collision is not available currently for signalized
intersections in the state. Instead, left-turn, through, and right-turn
movements in the crash hour of each approach were converted
from approach daily turning movements considering daily, weekly,
monthly variations, and the growth rates over the study period.

The Crash Analysis Reporting (CAR) system maintained by the
Florida Department of Transportation (FDOT) Safety Office was
used to retrieve the crash data for the selected intersections. There
were a total of 13,218 collisions for the selected intersections over
the 6-year period. The crash site location (e.g., at intersection),
the initial crash type (e.g., left-turn), the vehicle movement (e.g.,
straight ahead, making left-turn), the direction of travel (e.g., west),
and the contributing cause (e.g., failed to yield right-of-way, disre-
garded traffic signal) for both at-fault and innocent vehicles/drivers
are stored in the crash database. Left-turn crashes in this study are
defined as the crashes that occurred at the intersection when at-
least one involved vehicle was turning left before the collisions.
Only vehicular crashes were considered. Other variables from crash
database include driver’s age, gender, estimated speed, impact
point, ejection, crash safety equipment usage, light condition for
both left-turning vehicle and another vehicle (might go through,
turn left, or turn right).

Of the 13,281 collisions at the selected intersections, 3098 were
left-turn collisions. This accounts for 23.4% of all police reported
vehicle collisions at the selected intersections. These collisions can
be classified into nine different patterns (Wang and Abdel-Aty,
2008). Patterns 5 and 8 are the most frequently occurring collision
types, accounting for 72.5% and 14.1% of all left-turn crashes, respec-
tively, and they contributed all 32 left-turn fatal crashes as shown
in Table 1, which summarized left-turn crash severity for Patterns

Left-turn crash injury severity distribution by conflicting patterns for the selected intersections

Injury severity levels Pattern 5 crashes

Pattern 8 crashes All left-turn crashes

None 694 (31.18%)
Possible 547(24.57%)
Non-incapacitating 651(29.25%)
Incapacitating 313(14.06%)
Fatal 21(0.94%)

Total 2226(100.00%)

126(28.90%) 1129(35.90%)
96(22.02%) 730(23.21%)
130(29.82%) 845(26.87%)
73 (16.74%) 409(13.00%)
11(2.52%) 32(1.02%)
436(100.00%) 3145 (100.00%)
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Fig.1. Collision diagram and data arrangement for Patterns 5 and 8 left-turn crashes.

5 and 8 and entire left-turn crashes. Based on vehicle movements
(e.g., straight ahead, making left-turn) and direction of travel of both
involved vehicles, left-turn crashes were assigned to the approach
from which the left-turning vehicles turned. The approach level
intersection-related explanatory variables were arranged as enter-
ing, near-side crossing, far-side crossing, and opposing approaches
as illustrated in Fig. 1 for Patterns 5 and 8. All of the crash related
data were assembled with intersection related data.

4. Estimation results

Partial proportional odds models with both logit and probit
functions were developed for Patterns 5 and 8, and total left-turn
crash injury severity. Partial proportional odds models were fitted
by a user-written program gologit2 (Williams, 2006). For compar-
ison, ordered logit and probit models were also fitted.

4.1. Pattern 5 left-turn crashes

The ordered logit model had better performance than the
ordered probit model (AIC=5935.64 vs. 5941.97). Parallel-lines
assumption for each variable was tested using a series of Wald tests
to see whether its coefficients differ across equations. The variable,
crash alcohol/drug involved, violated parallel-lines assumption
(p-value =0.0066). Partial proportional odds models with both
logit and probit functions were fitted with this variable changing
across equations while other variables were imposed to have their
effects meet parallel-lines assumption. The partial proportional
odds model with a logit function performed better than that with
a probit function (AIC=5931.86 vs. 5934.54; pseudo R? = 0.0466 vs.
0.0454). The estimations for the ordered logit model and the par-
tial proportional odds model with logit function are presented in
Table 2, and the marginal effects are reported in Table 3.

The estimated partial proportional odds model had one beta
coefficient for each variable, three gamma coefficients for the
variable violating parallel-lines assumption, and four alpha coef-
ficients reflecting the cut-off points. The gamma coefficients for
Gamma_2 through Gamma_4 were highly significant; p-values were
0.023, 0.051, and 0.005, respectively. The Gamma_2 value for the
variable crash alcohol/drug involved (0.3359) was added to beta
estimate (0.0618) to yield the value for the coefficient of this
variable in the second equation. The same process was used to
get the coefficient in the third equation (0.5215=0.4597 +0.0618)
and in the fourth equation (0.9532=0.8914+0.0618). There-
fore, the estimated coefficients were increasing, which was
masked using the ordered probability models as shown in
Table 2. The marginal effects also showed that alcohol or drugs
had positive effects on severe and fatal crashes (0.0299 and
0.0243).

Traffic volume was identified to be the most significant factor
for crash occurrence. In this study, the different forms of traffic
volume were tested for investigating their effect on crash injury
severity, which include traffic of the entire intersection, traffic of
entering approach, traffic of opposing approach, left-turning traf-
fic, and opposing through traffic. The results showed that having
heavy opposing through traffic, specifically in the hour of colli-
sion, Pattern 5 crashes tended to be more severe (Coef.=0.0148;
p-value =0.0055). These results were confirmed by the positive
marginal effects for serious, severe, and fatal injuries as shown in
Table 3. From the crash data, 81.6% of Pattern 5 crashes were left-
turning vehicles at-fault. Generally, more opposing through traffic
meant shorter gaps for left-turn vehicles and therefore there was
less time and space after crash occurred for both vehicles to react
to reduce injury severity.

Among the geometric design features, left-turn lane offset was
identified to be significant (Coef.=—0.1813; p-value = 0.02). Provid-
ing positive offset will mitigate the sight restriction for vehicles
turning left from opposing left-turn lanes (Joshua and Saka, 1992;
McCoy et al., 1992). With better visibility, both drivers would be
better able to react and to lower crash severity.

Protected left-turn phase was associated with less severe
crashes (Coef.=-0.1169); however, compound phase was not sig-
nificant and it was combined with permissive phase. One obvious
reason is that at a compound signal left-turning and opposing
through traffic is usually higher than that for a permissive signal. In
addition, compound is the most complicated phasing. Crash records
indicated that left-turn crashes occurring under protected left-turn
phases typically resulted as left-turn vehicles were not cleared
from the intersection upon the onset of the opposing through
vehicle’s green signal. Of these crashes, left-turn vehicles collided
with vehicles which just entered intersections and therefore the
through vehicles’ speeds were low, while under permissive left-
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Table 2
Models for pattern 5 left-turn crashes

Variables Ordered logit estimates Generalized ordered logit estimates
Coef. S.E. Coef. SEEN
Beta
Logarithm of the opposing through traffic in the crash hour 0.0148 0.0042 0.0148 0.0042
Positive left-turn lane offset (vs. zero or negative left-turn lane offset) —0.1804 0.0784 —0.1813 0.0784
Protected left-turn phasing on entering approach (vs. compound or permissive left-turning) —0.2586 0.0882 —0.2608 0.0882
Standardized all-red time for opposing through movement —0.6615 0.2501 —0.6642 0.2500
Crash alcohol/drug involved (vs. no) 0.2146 0.1829 —0.1093 0.2166
Left-turning driver age (base: 25 < age <79)
Very young (<19) —0.4098 0.1107 -0.4136 0.1109
Young (20 < age < 24) —0.1290 0.1085 —-0.1301 0.1085
0ld (>80) 0.5743 0.2276 0.5809 0.2284
Impact point of through vehicle (base: is front)
Front left -1.1913 0.1125 -1.1898 0.1125
Front right —-0.2991 0.0970 —-0.2983 0.0970
Back —1.6884 0.2963 -1.6876 0.2967
Back left and right —0.9875 0.1596 —0.9900 0.1596
Speed ratio of opposing through vehicle (estimated speed/speed limit) 0.1831 0.1065 0.1849 0.1065
Safety equipment in use vs. not used —0.6708 0.1206 —0.6672 0.1203
Gamma.2
Crash alcohol/drug involved vs. no - - 0.3725 0.1671
Gamma_3
Crash alcohol/drug involved vs. no - - 0.5249 0.2617
Gamma_4
Crash alcohol/drug involved vs. no - - 1.7161 0.5439
Alpha
Constant 1 -1.7359 0.2042 —1.7482 0.2042
Constant 2 —-0.6055 0.2014 —-0.5981 0.2013
Constant 3 1.0092 0.2027 1.0276 0.2031
Constant 4 3.9801 0.2916 4.1800 0.3159
Summary statistics
Number of observations 2226 2226
Log likelihood at convergence —2949.82 —2944.92
AIC 5935.64 5931.86
Pseudo R? 0.0440 0.0466

Note: dash (-) indicates data not applicable or unavailable.

Table 3
Marginal effects and standard errors (in parentheses) for Pattern 5 crashes based on generalized ordered logit model

Variables Crash injury severity
None injury Possible injury Non-incapacitating injury Incapacitating injury Fatal
Logarithm of the opposing through traffic in —0.0031 (0.0009) —0.0005 (0.0002) 0.002 (0.0006) 0.0016 (0.0005) 0.0001 (0.00004)
the crash hour
Positive left-turn lane offset (vs. zero or 0.0379 (0.0164) 0.0065 (0.0029) —0.0238 (0.0103) —0.0194 (0.0084) —0.0012 (0.0006)
negative left-turn lane offset)
Protected left-turn phasing on entering 0.0556 (0.0192) 0.0078 (0.0024) —0.0348 (0.012) —0.0269 (0.0088) —0.0017 (0.0007)
approach (vs. compound or permissive
left-turning)
Standardized all-red time for opposing 0.1389 (0.0523) 0.0242 (0.0097) —0.0873 (0.0331) —0.0713 (0.0269) —0.0045 (0.002)
through movement
Crash alcohol/drug involved (vs. no) 0.0233 (0.047) —0.0886 (0.0388) 0.0111 (0.0447) 0.0299 (0.0323) 0.0243 (0.0138)
Left-turning driver age (base: 25 < age < 79)
Very young (<19) 0.0909 (0.0254) 0.008 (0.0021) —0.0562 (0.0155) —0.0402 (0.0098) —0.0025 (0.0008)
Young (20 < age < 24) 0.0277 (0.0235) 0.004 (0.0029) —0.0173 (0.0147) —0.0135 (0.0109) —0.0008 (0.0007)
0ld (=80) —0.107 (0.0362) —-0.0372 (0.02) 0.0638 (0.0188) 0.0752 (0.0349) 0.0052 (0.0029)

Impact point of through vehicle (base: is front)
Front left
Front right
Back
Back left and right
Speed ratio of opposing through vehicle
(estimated speed/speed limit)
Safety equipment in use vs. not used

0.2745 (0.0268)
0.0643 (0.0215)
0.3983 (0.0635)
0.2322 (0.0393)
~0.0387 (0.0223)

0.124 (0.0196)

—0.0122 (0.008)
0.0079 (0.0022)
—0.0846 (0.0306)
—0.0154 (0.0111)
—0.0067 (0.004)

0.0413 (0.0104)

—0.1586 (0.0148)
—0.0401 (0.0134)
—0.2065 (0.026)
—0.1341 (0.0206)
0.0243 (0.014)

~0.0739 (0.0109)

~0.0978 (0.008)
~0.0302 (0.0093)
~0.1014 (0.0096)
~0.0781 (0.0094)
0.0198 (0.0115)

—0.0854 (0.0181)

—0.0059 (0.0014)
~0.0019 (0.0007)
~0.0058 (0.0014)
—0.0046 (0.0012)

0.0013 (0.0008)

~0.0059 (0.0019)
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Table 4
Models for Pattern 8 left-turn crashes

Variables Ordered logit estimates Generalized ordered logit estimates
Coef. z Coef. z

Beta

Logarithm of the near-side crossing through traffic in the crash hour 0.1517 0.0770 0.1532 0.0762

Left-turn lane offset of entering approach (base: negative)

Zero offset —0.7168 0.3657 —0.6746 0.3646
Positive offset —0.6473 0.3596 —0.5982 0.3582

Driver ejected vs. no 1.9194 0.6529 1.9246 0.6524

Crash alcohol/drug involved vs. no 1.3422 0.4597 0.4518 0.5315
Gamma_2

Crash alcohol/drug involved vs. no - - 0.2609 0.3953
Gamma.3

Crash alcohol/drug involved vs. no - - 1.1922 0.4988
Gamma_4

Crash alcohol/drug involved vs. no - - 2.1689 0.7802
Alpha

Constant 1 —0.5425 - —0.5131 0.5966

Constant 2 0.4216 - 0.4617 0.5996

Constant 3 1.8879 - 1.9865 0.6038

Constant 4 4.2123 - 4.5611 0.7050
Summary statistics

Number of observations 436 436

Log likelihood at convergence -616.43 -612.37

AIC 1250.86 1248.74

Pseudo R? 0.0215 0.0279

Note: dash (-) indicates data not applicable or unavailable.

turn phase, left-turn vehicles usually collided with high speed
opposing through traffic.

Another key variable for signal control is all-red time for oppos-
ing through traffic. In the state of Florida, FDOT recommends an
all-red interval of 1 s for approach speeds up to 50 mph, and 2 s for
approach speeds above 50 mph (Traffic Engineering Manual, 2007).
At each intersection, all-red times could be increased as necessary
to fit the specific conditions. The safety effects of the standardized
all-red time (defined as the all-red time divided by the crossing dis-
tance) and the differences between the real values and the standard
values for all-red intervals have been explored in the models. The
result showed that providing longer standardized clearance time
tended to reduce crash severity (Coef.= —0.6642). For the approach
with permissive left-turn phase, left-turners might sneak into inter-
sections on a permissive green waiting to make a left-turn, and
they might use the clearance interval if there were not enough
gaps. Under protected left-turn phase, left-turners might beat red-
light and they were probably unable to clear from intersections.
In both situations, if the crash occurred with more all-red time
drivers would have more time to react and therefore to reduce crash
severity.

Table 5

Driver’s age had significant effect on crash injury severity. Com-
pared to people in middle age, very old people (age >80) were
more likely to be involved in severe left-turn crashes, while very
young (age < 19) and young people (19 <age > 24) were more likely
to sustain severe injuries, which is consistent with previous lit-
erature (Evans, 2004). For very old drivers, their weak physical
condition might explain the higher probability of injury and fatality.
Rice (Rice, 2007) summarized that approximately 27% (or 2450) of
intersection fatalities involved people age 65 years or older. Accord-
ing to 2001 National Household Travel Survey, the elderly had the
highest fatal crash rate (fatalities per 100 million vehicles miles of
travel), around 4.2 and 11 for age group 80-84 and older than 85,
respectively (Liss et al., 2001).

Of the crash related variables, the points of impact of both
vehicles were the most significant variables to affect crash
severity. Coefficients and marginal effects of severe injuries (non-
incapacitating injury, incapacitating injury, and fatal) for the factors
front left, front right, back, back left and right were all negative,
which showed that crashes were more likely to involve severe
injury if a through vehicle was struck at the front. The energy of
involved vehicles was translated into greater forces being exerted

Marginal effects and standard errors (in parentheses) for Pattern 8 crashes based on generalized ordered logit model

Variables Crash injury severity
None injury Possible injury Non-incapacitating injury Incapacitating injury Fatal

Logarithm of the near-side crossing —0.0311 (0.0184) —0.0072 (0.0047) 0.0156 (0.0097) 0.0201 (0.0118) 0.0026 (0.0020)
through traffic in the crash hour
Left-turn lane offset of entering approach
(base: negative)

Zero offset 0.1404 (0.0940) 0.0263 (0.0152) —0.0709 (0.0488) —0.0848 (0.0528) —0.0109 (0.0088)

Positive offset 0.1202 (0.0893) 0.0282 (0.0232) —0.0588 (0.0429) —0.0791 (0.0617) —0.0105 (0.0105)
Driver ejected vs. no —0.2344 (0.0630) —0.1478 (0.0478) —0.0354 (0.0852) 0.3300 (0.1068) 0.0877 (0.0915)
Crash alcohol/drug involved vs. no —0.0833(0.2089) —0.0896 (0.1334) —0.1706 (0.0928) 0.1836 (0.1263) 0.1599 (0.0995)
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Table 6
Models for total left-turn crashes

Variables Ordered logit estimates Generalized ordered probit estimates
Coef. z Coef. z
Beta
Left-turn crash conflicting pattern (base: Pattern 6)
Pattern 5 1.5535 0.3613 0.8858 0.1943
Pattern 8 1.9124 0.3794 1.1122 0.2056
Patterns 1-4, 7 and 9 0.8874 0.3667 0.4942 0.1969
Conflicting vehicle types (base: other combination)
Both vehicles in large size —0.3482 0.1120 —0.1951 0.0655
Motorcycle involved 0.8471 0.2750 0.5057 0.1637
Lighting condition: dark with street light vs. others —-0.2610 0.0757 —0.1474 0.0444
Maximum of speed ratios (estimated speed/speed limit) of two involved vehicles 0.1729 0.0865 0.1029 0.0509
Driver ejected (vs. no) 0.6871 0.2851 0.3882 0.1618
Safety equipment in use (vs. not used) —0.4669 0.1038 —0.2656 0.0613
Crash alcohol/drug involved (vs. no) 0.6982 0.2503 0.0618 0.1717
Point of impact of entering left-turning vehicle (base: front and front right)
Back right —0.6947 0.1014 —0.4053 0.0602
Back —-1.3157 0.2265 -0.7727 0.1290
Back left -0.9233 0.1960 —-0.5543 0.1169
Front left -0.2208 0.1032 -0.1371 0.0607
Other -0.7372 0.1961 —0.4989 0.1202
Point of impact of another vehicle (base: front and front left)
Front right -1.0130 0.0980 —0.6053 0.0576
Back right -0.5116 0.0885 —-0.2907 0.0522
Back and back left —-1.8358 0.2056 —1.0473 0.1181
Other —-1.0140 0.1350 —0.5900 0.0798
Driver age of left-turning vehicle (base: age > 25)
Very young (<19) -0.4238 0.0963 —0.2446 0.0566
Young (20 < age < 24) -0.2225 0.0955 —0.1503 0.0565
Driver age of another vehicle (base: 20 < age < 64)
Very young (<19) -0.2271 0.1028 —0.1441 0.0611
0ld (>65) 0.2473 0.1421 0.1500 0.0843
Gamma.-2
Crash alcohol/drug involved vs. no - - 0.3359 0.1174
Point of impact of another vehicle: other vs. base case - - 0.1607 0.0974
Gamma.3
Crash alcohol/drug involved vs. no - - 0.4597 0.1869
Point of impact of another vehicle: other vs. base case - - 0.4342 0.1632
Gamma_4
Crash alcohol/drug involved vs. no - - 0.8914 0.2726
Point of impact of another vehicle: other vs. base case - - 0.4342 0.1632
Alpha
Constant 1 —-0.4553 - -0.3155 0.2076
Constant 2 0.6766 - 0.3766 0.2081
Constant 3 2.2959 - 1.3606 0.2080
Constant 4 5.1588 - 2.7590 0.2200
Summary statistics
Number of observations 3145 3145
Log likelihood at convergence —3962.19 —3956.88
AIC 7978.38 7977.75
Pseudo R? 0.0816 0.0829

Note: dash (-) indicates data not applicable or unavailable.

on the occupants of involved vehicles when they collided. The
variable speed ratio of through vehicle was marginally significant
to increase crash injury (Coef.=0.1849; p-value =0.0850), which is
consistent with the previous studies (Kweon and Kockelman, 2003).
The result also showed that using the seat belt would reduce crash
severity significantly (Coef.=—-0.6672; p-value <0.0001).

4.2. Pattern 8 left-turn crashes

There were 436 Pattern 8 left-turn crashes, which account for
14% of total left-turn crashes, while more than 30% of left-turn fatal
crashes were from this pattern. The partial proportional odds model

with logit function had better performance (AIC=1248.74). The
estimates and the marginal effects are presented in Tables 4 and 5,
respectively. The variable crash alcohol/drug involved was identi-
fied to have varying coefficients for different injury levels. Near-side
crossing through traffic in the crash hour, zero or positive left-turn
lane offset of entering approach, and crashes with drivers ejected
were also identified to be significant.

4.3. Total left-turn crashes

The total number of left-turn crashes was 3145 for the selected
intersections over the period of study. Both crash alcohol/drug
involved and point of impact of another vehicle were identified to
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violate parallel-lines assumption, with p-values 0.003 and 0.041
in the Wald test, respectively. Partial proportional odds models
with either logit or probit function were fitted with these two fac-
tors differing across injury levels. The p-value of the Wald test for
parallel-lines assumption for the final model was 0.8120, which
indicated that the final model did not violate the parallel-lines
assumption. The partial proportional odds model with probit func-
tion had better performance with the largest Pseudo R? (0.0829)
and the smallest AIC (7977.75) as shown in Table 6.

Results showed that Pattern 5 was more severe than Pattern
6 (conflicting with opposing right-turn vehicle. Coef.=0.8858),
and Pattern 8 was the most severe left-turning conflicting pat-
tern (Coef.=1.1122). Crashes occurred at night but with street
light and safety equipment in use will reduce crash injury level,
Coef.=—0.1474 and —0.2656, respectively. Crashes involved motor-
cycle, with drivers ejected from vehicle, and higher speed ratio of
involved vehicle tend to produce more severe left-turn crashes,
Coef.=0.5057, 0.3882, 0.1029, respectively. For both involved vehi-
cles, the front is the most dangerous impact point. Previous studies
showed that young drivers were more likely involved in crashes,
however, the negative coefficients —0.2446 and —0.1441 indicated
that they were less likely to be injured.

5. Summary and discussion

This paper presents a series of crash injury severity models
for left-turn crashes. Crash injury severity is categorized into five
levels in increasing of severity. The literature suggests that the
logit model’s assumption of independent errors for alternatives
is inconsistent with the fact that the crash injuries are ordered.
The parallel-lines assumption (or proportional odds assumption)
of commonly applied ordered probability models is usually too
restricting. This assumption may be violated only by one or a few
of the included variables. A partial proportional odds model where
the parallel-lines constraint is relaxed only for those variables when
it is not justified is applied in this study.

Partial proportional odds models were developed for left-
turning traffic colliding with opposing through traffic (Pattern 5)
or with near-side through traffic (Pattern 8), and all of the left-turn
collisions that occurred at 197 signalized intersections in the Cen-
tral Florida area over 6 years. A massive data collection effort was
undertaken for these intersections including intersection approach
geometric design features, traffic control and operational features
(with signal plan), traffic characteristics (with turning movements),
and crash data. Left-turn crashes were located to the crash sites
where they occurred, which enables the researchers to specify
the effect of attributes of intersection approach features on crash
severity. The partial proportional odds models perform consistently
better for Patterns 5 and 8, and total left-turn crashes. By using
partial proportional odds models, the interpretation of the param-
eters yields greater insight concerning contributing factors, i.e., it
revealed the increasing crash injury severity due to alcohol and/or
drugs.

Of traffic characteristics, the estimated opposing through traffic
and the near-side crossing through traffic in the hour of crash are
identified to be significant for Patterns 5 and 8 crash injury, respec-
tively. Traffic volume has been identified as the most significant
factor influencing crash occurrence. This study found that neither
the total approach volume, nor the entire intersection volume, but
rather the specific vehicle movements affected crashed injury sig-
nificantly. With the real traffic volume at the time of crash available
in the future, a more realistic relationship can be established.

Of intersection geometric design features, left-turn offset has
been identified to be significant for both Patterns 5 and 8. Of

traffic control and operational features, protected left-turn signal
and all-red time on opposing through movements have significant
influences on Pattern 5 crash injury. Crashes occurred at night at
intersections with street lights are associated with lower left-turn
crash injury level. All these are viable factors that traffic engineers
have some control over. Therefore, based on these findings more
efficient countermeasures can be developed to mitigate left-turn
crash severity. Many crash related variables were identified to be
significant whichinclude: alcohol/drug use, vehicle type, driver age,
impact point, speed ratio, safety equipment, and driver ejection.
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