
Accident Analysis and Prevention 40 (2008) 1674–1682

Contents lists available at ScienceDirect

Accident Analysis and Prevention

journa l homepage: www.e lsev ier .com/ locate /aap

Analysis of left-turn crash injury severity by conflicting pattern using partial
proportional odds models

Xuesong Wang ∗, Mohamed Abdel-Aty
Department of Civil & Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450, United States

a r t i c l e i n f o

Article history:
Received 19 October 2007
Received in revised form 24 May 2008
Accepted 2 June 2008

Keywords:
Signalized intersection
Left-turn crash
Conflicting pattern
Crash injury severity
Partial proportional odds model
Significant factor

a b s t r a c t

The purpose of this study is to examine left-turn crash injury severity. Left-turning traffic colliding with
opposing through traffic and with near-side through traffic are the two most frequently occurring con-
flicting patterns among left-turn crashes (Patterns 5 and 8 in the paper, respectively), and they are prone
to be severe. Ordered probability models with either logit or probit function is commonly applied in crash
injury severity analyses; however, its critical assumption that the slope coefficients do not vary over dif-
ferent alternatives except the cut-off points is usually too restrictive. Partial proportional odds models are
generalizations of ordered probability models, for which some of the beta coefficients can differ across
alternatives, were applied to investigate Patterns 5 and 8, and the total left-turn crash injuries. The results
show that partial proportional odds models consistently perform better than ordered probability models.
By focusing on specific conflicting patterns, locating crashes to the exact crash sites and relating approach
variables to crash injury in the analysis, researchers are able to investigate how these variables affect
left-turn crash injuries. For example, opposing through traffic and near-side crossing through traffic in
the hour of collision were identified significant for Patterns 5 and 8 crash injuries, respectively. Protected
left-turn phasing is significantly correlated with Pattern 5 crash injury. Many other variables in driver
attributes, vehicular characteristics, roadway geometry design, environmental factors, and crash charac-

teristics were identified. Specifically, the use of the partial proportional formulation allows a much better
identification of the increasing effect of alcohol and/or drug use on crash injury severity, which previously
was masked using the conventional ordered probability models.
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. Introduction

Intersections are among the most dangerous locations of a road-
ay network. In the state of Florida, 43.1% of fatalities and serious

njuries occurred at or were influenced by intersections (Florida
epartment of Transportation, 2006). In the U.S., although only
round 10% of all intersections are signalized, in 2005, nearly 30%
2744) of intersection fatalities occurred at signalized intersections
Rice, 2007). Left-turn crashes occur frequently and they account
or a high percentage of total crashes at signalized intersections.

hey are prone to be severe, possibly due to the relatively high con-
icting speeds of involved vehicles and the angle of impact. In a
ample of signalized intersections collected in Orange and Hillsbor-
ugh counties in Florida, 64.2% of left-turn crashes involved injury,
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hereas the percentage of injury crashes was only 50.1% for all
ther crashes.

From 2002, a series of crash frequency studies have been
onduced in Florida to identify the crash profiles for the major inter-
ection types (Abdel-Aty and Wang, 2006; Wang and Abdel-Aty,
006, 2007, 2008; Wang et al., 2006). In one study, Wang and Abdel-
ty (2008) investigated conflicting flows, intersection geometric
esign features, and traffic control and operational features on left-
urn crash occurrence. Left-turn crashes were classified into distinct
onflicting patterns (i.e., left-turn traffic colliding with opposing
hrough traffic, or with near-side through traffic, etc.), and then the
rash frequencies of different patterns were modeled. The studies
ndicate there are obvious differences in the factors which corre-
ated with different left-turn collisions. However, crash frequency
tudies model accumulated crash counts, which ignores the dif-

erence of severe and minor crashes. Therefore, they are unable to
nvestigate how specific features affect crash injury severity.

The left-turn crashes at signalized intersections result in a huge
ost to society in terms of death, injury, lost productivity, and prop-
rty damage. However, how the different factors affect left-turn

http://www.sciencedirect.com/science/journal/00014575
mailto:xuewang@mail.ucf.edu
dx.doi.org/10.1016/j.aap.2008.06.001


lysis a

c
b
r
fl
b
g
i
c
a

b
n
i
fi
(
c
r
M
t
w
d
a
s
l
i
a
t

a
f
l
s
t
n

(
c
o
l
t
f
e
c
c
e

e
m
b
s
(
c
l
u
t
w
K
o
o
s
d
m
o

i

p
p
e
a
c
f
a
a
a
v
p
o
p
m
o

t
w
m
l
l
m
l
t
5
t
i
v
a
7
p

i
i
A
p
o
c
i
a
m
m
o
t
t
o
t
a
t
s

2

o
i
N
a
O

X. Wang, M. Abdel-Aty / Accident Ana

rash severity is still not clear. For example, traffic volume has
een identified as the most significant factor affecting crash occur-
ence (Wang and Abdel-Aty, 2008), but it is not clear whether traffic
ow affects crash severity. Left-turn phase has been identified to
e significant for left-turn crash occurrence, but no study investi-
ates its influence on crash severity. The purpose of this study is to
nvestigate how traffic characteristics, driver attributes, vehicular
haracteristics, roadway geometry features, environmental factors,
nd crash characteristics affect left-turn crash injury severity.

In police reports, crash injury is categorized into five levels
ased on the most serious injury to any person involved in a crash:
o injury, possible injury, non-incapacitating injury, incapacitating

njury and fatal injury. Multinomial logit models were speci-
ed for multiple alternatives of severity. Shankar and Mannering
1996) considered environmental, roadway, vehicular, and rider
haracteristics in their multinomial logit analysis of motorcycle-
ider severity on single-vehicle motorcycle crashes. Carson and
annering (2001) developed multinomial logit models to examine

he effect of ice-warning signs on crash severity for different road-
ay functional classes. Ulfarsson and Mannering (2004) explored
ifferences in severity between male and female drivers in single
nd two-vehicle collisions; separate multinomial logit models of
everity were estimated for male and female drivers. However, the
ogit model’s assumption of independent errors for each alternative
s inconsistent with the fact that the alternatives for crash injuries
re ordered. With ordered alternatives, one alternative is similar to
hose close to it and less similar to those further away (Train, 2003).

Nested logit, mixed logit, or probit models can be applied to
ccount for the pattern of similarity and dissimilarity among dif-
erent injury levels. Abdel-Aty (2003) compared the multinomial
ogit, nested logit, and ordered probit models for driver’s injury
everity at toll plaza and found that nested logit model produced
he best fit. However, Train (2003) thinks such a specification does
ot actually fit the structure of the ordinal data.

Considering that severe crashes are comparatively less frequent
especially fatal crashes) and also for simplicity, some researchers
ollapsed the five level injury data into fewer levels. The binary logit
r probit model can be used when severity is classified into two
evels. Al-Ghamdi (2002) applied the binary logit model to examine
he effect of crash characteristics on fatal and non-fatal injury and
ound that crash location and cause of crash were significant. Huang
t al. (in press) and Obeng (2007) applied the binary logit to analyze
rash injury of signalized intersections. But combining adjoining
ategories in ordered categorical regression could lose efficiency in
stimating regression parameters (Train, 2003).

The main characteristic of crash injury data, from a mod-
ling perspective, is that the responses are inherently ordered
ultiple-choice variables. Ordered logit and probit models have

een commonly applied to fit the ordinal data structure of injury
everity. By using the ordered probit model, O’Donnell and Connor
1996) investigated how variations in the attributes of road users
an lead to variations in the probabilities of sustaining different
evels of injury in motor vehicle crashes. Ma and Kockelman (2004)
sed the ordered probit model to predict severity based on fac-
ors including traffic, roadway and occupant characteristics and
eather conditions at the time of a crash and type of vehicle.
hattak (2001) applied the ordered probit model to examine injury
f multi-vehicle rear-end crashes. Abdel-Aty (2003) applied the
rdered probit model to predict crash severity on roadway sections,
ignalized intersections and toll plazas by using the Florida crash

atabase. Abdel-Aty and Keller (2005) created the ordered probit
odels by using roadway attributes and crash types for crashes

ccurred at the signalized intersections.
Ordered probability models are straightforward because they

mpose the restriction that regression parameters (except cut-off

o
A
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c
m
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oints) are the same for different severity levels. This is called
arallel-lines assumption, or proportional odds assumption. How-
ver, for injury severity, it is not clear whether distances between
djacent injury levels are equal. It is too arbitrary to assume that
oefficients of ordered probability models are the same except
or cut-off points. The parallel-lines constraint can be relaxed for
ll variables, but estimating more parameters than necessary will
lso cause some variables to be insignificant. Considering that the
ssumption may be violated only by one or a few of the included
ariables, Peterson and Harrell (1990) proposed a partial pro-
ortional odds model, where parallel-lines constraint is relaxed
nly for those variables when it is not justified and allows non-
roportional odds for a subset of the explanatory variables. To have
ore parsimonious layout, they used a gamma parameterization

f partial proportional odds model.
Analyzing left-turning traffic is crucial for improving intersec-

ion operation and safety. Left-turn crashes are not all identical
ith respect to the maneuvers of the involved vehicles (vehicle
ovement and travelling direction). Left-turning traffic may col-

ide with many other traffic flows at signalized intersections, and
eft-turn crashes have many distinct conflicting patterns in vehicle

aneuvers before collisions. Wang and Abdel-Aty (2008) classified
eft-turn crashes into nine distinct conflicting patterns, and then
he crash frequencies of different patterns were modeled. Pattern
is for those left-turn crashes of which one involved vehicle was

urning left and another vehicle was going straight on the oppos-
ng approach. Pattern 8 is for left-turning vehicles colliding with
ehicles going through from the near-side crossing approach. These
re the most frequently occurring collision patterns, accounting for
2.5% and 14.1% of all left-turn crashes, respectively, and they are
rone to be severe.

In summary, there have been numerous studies analyzing crash
njury severity. However, only limited studies examined crash
njury severity at signalized intersections (Abdel-Aty, 2003; Abdel-
ty and Keller, 2005; Huang et al., in press; Obeng, 2007), and in
revious studies, crashes were not located to the exact sites they
ccurred. Therefore, the previous approach is unable to associate
rash injury to features of related approaches. There is no study
nvestigating injury severity for left-turn crashes specifically. In
ddition, most severity analyses depended on crash data in which
ost intersection attributes are not available (i.e., turning move-
ents, signal phase, left-turn offset, etc.). However, these are the

nly viable factors traffic engineers have some control over. In
his study, left-turn crash injury severity for Patterns 5 and 8, and
otal left-turn crashes are investigated using partial proportional
dds models. Left-turn crashes are located to the crash sites where
hey occurred, which enables researchers to specify the effect of
ttributes of intersection geometric design features, traffic con-
rol and operational features, and traffic characteristics on crash
everity.

. Methodology: partial proportional odds models

Crash injury severity is categorized into five levels in increasing
f severity and coded as: 1 = no injury, 2 = possible injury, 3 = non-
ncapacitating injury, 4 = incapacitating injury, and 5 = fatal injury.
ote that level j = 1 is defined as the minimum value of the vari-
ble, no injury. Let Yi denotes the recorded crash injury for crash i.
rdered logit and probit models can be derived based on the level

f an unobserved variable (Train, 2003; Washington et al., 2003).
critical assumption of the ordered probability models is that the

lope coefficients do not vary over different alternatives except the
ut-off points. This parallel-lines assumption could be violated in
any cases. A generalized ordered logit model can be specified to
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elax parallel-lines assumption for all variables and the probability
f crash injury for a given crash can be specified as

(Yi > j) = g(X ′
iˇj) = exp(˛j − X ′

i
ˇj)

1 + exp(˛j − X ′
i
ˇj)

, j = 1, 2, 3, 4 (1)

here Xi is a p × 1 vector containing the values of crash i on the
ull set of p explanatory variables, ˇj is a p × 1 vector of regression
oefficients, ˛j represents cut-off point for the jth cumulative logit.
he only difference between this model and the ordered logit model
s that ˇ is not fixed across equations.

Considering that the parallel-lines assumption may be violated
nly by one or a few variables, a partial proportional odds model
an be specified, for which one or more ˇs differ across equations
nd others can be the same for all equations. Peterson and Harrell
1990) proposed a gamma parameterization of partial proportional
dds model with logit function as below:

(Yi > j) = g(X ′
iˇj) = exp[˛j − (X ′

i
ˇj + T ′

i
�j)]

1 + exp[˛j − (X ′
i
ˇj + T ′

i
�j)]

(2)

here Ti is a q × 1 vector, q ≤ p, containing the values of crash i
n that subset of the p explanatory variables for which the pro-
ortional odds assumption is not assumed, and � j is a q × 1 vector
f regression coefficient associated only with the jth cumulative
ogit. In the model, each explanatory variable has one ˇ coefficient,
− 2� coefficients, where k is the number of alternatives (in this
tudy, k = 5). There are k − 1˛ coefficients reflecting cut-off points.
he � coefficients represent deviations from proportionality. This
amma parameterization combines all the features of the tradi-
ional ordered models while allowing for non-proportionality in
ome or all of the variables in the model. If all the gammas are equal
o zero, it is actually a proportional odds model. The gamma param-
terized partial proportional odds model with a probit function can
e expressed as

(Yi > j) = g(X ′
iˇj) = ˚[˛j − (X ′

iˇj + T ′
i �j)] (3)

Partial proportional odds models can be fitted by a user-written
rogram gologit2 (Williams, 2006). It should be cautious for inter-
reting the coefficients of intermediate categories. The sign of ˇ
oes not always determine the direction of the effect of the inter-
ediate outcomes (Washington et al., 2003; Wooldridge, 2002).

he marginal effects are useful for interpretation of the variables.
n Stata (2005), for continuous variables, the derivative is calcu-
ated numerically; for dummy variable, a difference rather than
he derivative is computed. Ordered probability models and partial
roportional odds models with different functions (logit or probit)
re not nested. Pseudo R2 measure R2 = 1 − (ln L/ln L0) and Akaike’s
nformation criterion AIC = −2 ln L + 2p are applied to evaluate mod-

ls’ performance, where ln L and ln L0 are the log-likelihood in the
tted and intercept-only models, and p is the number of parame-
ers estimated. Pseudo R2 coincides with an interpretation of linear

odel R squared (Cameron and Trivedi, 1998). Smaller AIC indicates
better-fitting model (Stata, 2005).

2
t
t
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able 1
eft-turn crash injury severity distribution by conflicting patterns for the selected interse

njury severity levels Pattern 5 crashes

one 694 (31.18%)
ossible 547 (24.57%)
on-incapacitating 651 (29.25%)

ncapacitating 313 (14.06%)
atal 21 (0.94%)

otal 2226 (100.00%)
nd Prevention 40 (2008) 1674–1682

. Data preparation

Information on intersection geometry design features, traffic
ontrol and operational features, traffic flows, and crashes from
000 to 2005 were obtained for 197 four-legged signalized intersec-
ions from Orange and Hillsborough counties in the Central Florida
rea. Geometric design features for the intersection approach
nclude the number of through lanes, the number of left-turn lanes
nd whether they were exclusive, the presence of median, whether
t had exclusive right-turn lanes, the types of left-turn lane offset
negative, zero, or positive offset), the direction of each intersec-
ion roadway, and the angle of intersecting roadways. Traffic control
nd operational features were retrieved by inspecting signal plans
rovided by the county traffic engineering departments. The types
f left-turn control include “permissive”, “compound” (“permis-
ive/protected” or “protected/permissive”), and “protected”. The
ey factors for signal phases, i.e., yellow time, and all-red time for
hrough and left-turn (if protected) movements were retrieved. The
peed limit for each approach was also obtained.

In both counties, the approach movements (right-turn, through,
nd left-turn) for both morning and afternoon peak hours were
ounted for a year during the study period. The approach daily
urning movements were derived from the approach AADT and the
roportion of approach turning movements. The real traffic vol-
me in the hour of collision is not available currently for signalized

ntersections in the state. Instead, left-turn, through, and right-turn
ovements in the crash hour of each approach were converted

rom approach daily turning movements considering daily, weekly,
onthly variations, and the growth rates over the study period.
The Crash Analysis Reporting (CAR) system maintained by the

lorida Department of Transportation (FDOT) Safety Office was
sed to retrieve the crash data for the selected intersections. There
ere a total of 13,218 collisions for the selected intersections over

he 6-year period. The crash site location (e.g., at intersection),
he initial crash type (e.g., left-turn), the vehicle movement (e.g.,
traight ahead, making left-turn), the direction of travel (e.g., west),
nd the contributing cause (e.g., failed to yield right-of-way, disre-
arded traffic signal) for both at-fault and innocent vehicles/drivers
re stored in the crash database. Left-turn crashes in this study are
efined as the crashes that occurred at the intersection when at-

east one involved vehicle was turning left before the collisions.
nly vehicular crashes were considered. Other variables from crash
atabase include driver’s age, gender, estimated speed, impact
oint, ejection, crash safety equipment usage, light condition for
oth left-turning vehicle and another vehicle (might go through,
urn left, or turn right).

Of the 13,281 collisions at the selected intersections, 3098 were
eft-turn collisions. This accounts for 23.4% of all police reported
ehicle collisions at the selected intersections. These collisions can
e classified into nine different patterns (Wang and Abdel-Aty,

008). Patterns 5 and 8 are the most frequently occurring collision
ypes, accounting for 72.5% and 14.1% of all left-turn crashes, respec-
ively, and they contributed all 32 left-turn fatal crashes as shown
n Table 1, which summarized left-turn crash severity for Patterns

ctions

Pattern 8 crashes All left-turn crashes

126 (28.90%) 1129 (35.90%)
96 (22.02%) 730 (23.21%)

130 (29.82%) 845 (26.87%)
73 (16.74%) 409 (13.00%)
11 (2.52%) 32 (1.02%)

436 (100.00%) 3145 (100.00%)
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ig. 1. Collision diagram and data arrangement for Patterns 5 and 8 left-turn crashes.

and 8 and entire left-turn crashes. Based on vehicle movements
e.g., straight ahead, making left-turn) and direction of travel of both
nvolved vehicles, left-turn crashes were assigned to the approach
rom which the left-turning vehicles turned. The approach level
ntersection-related explanatory variables were arranged as enter-
ng, near-side crossing, far-side crossing, and opposing approaches
s illustrated in Fig. 1 for Patterns 5 and 8. All of the crash related
ata were assembled with intersection related data.

. Estimation results
Partial proportional odds models with both logit and probit
unctions were developed for Patterns 5 and 8, and total left-turn
rash injury severity. Partial proportional odds models were fitted
y a user-written program gologit2 (Williams, 2006). For compar-
son, ordered logit and probit models were also fitted.
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.1. Pattern 5 left-turn crashes

The ordered logit model had better performance than the
rdered probit model (AIC = 5935.64 vs. 5941.97). Parallel-lines
ssumption for each variable was tested using a series of Wald tests
o see whether its coefficients differ across equations. The variable,
rash alcohol/drug involved, violated parallel-lines assumption
p-value = 0.0066). Partial proportional odds models with both
ogit and probit functions were fitted with this variable changing
cross equations while other variables were imposed to have their
ffects meet parallel-lines assumption. The partial proportional
dds model with a logit function performed better than that with
probit function (AIC = 5931.86 vs. 5934.54; pseudo R2 = 0.0466 vs.
.0454). The estimations for the ordered logit model and the par-
ial proportional odds model with logit function are presented in
able 2, and the marginal effects are reported in Table 3.

The estimated partial proportional odds model had one beta
oefficient for each variable, three gamma coefficients for the
ariable violating parallel-lines assumption, and four alpha coef-
cients reflecting the cut-off points. The gamma coefficients for
amma 2 through Gamma 4 were highly significant; p-values were
.023, 0.051, and 0.005, respectively. The Gamma 2 value for the
ariable crash alcohol/drug involved (0.3359) was added to beta
stimate (0.0618) to yield the value for the coefficient of this
ariable in the second equation. The same process was used to
et the coefficient in the third equation (0.5215 = 0.4597 + 0.0618)
nd in the fourth equation (0.9532 = 0.8914 + 0.0618). There-
ore, the estimated coefficients were increasing, which was

asked using the ordered probability models as shown in
able 2. The marginal effects also showed that alcohol or drugs
ad positive effects on severe and fatal crashes (0.0299 and
.0243).

Traffic volume was identified to be the most significant factor
or crash occurrence. In this study, the different forms of traffic
olume were tested for investigating their effect on crash injury
everity, which include traffic of the entire intersection, traffic of
ntering approach, traffic of opposing approach, left-turning traf-
c, and opposing through traffic. The results showed that having
eavy opposing through traffic, specifically in the hour of colli-
ion, Pattern 5 crashes tended to be more severe (Coef. = 0.0148;
-value = 0.0055). These results were confirmed by the positive
arginal effects for serious, severe, and fatal injuries as shown in

able 3. From the crash data, 81.6% of Pattern 5 crashes were left-
urning vehicles at-fault. Generally, more opposing through traffic

eant shorter gaps for left-turn vehicles and therefore there was
ess time and space after crash occurred for both vehicles to react
o reduce injury severity.

Among the geometric design features, left-turn lane offset was
dentified to be significant (Coef. = −0.1813; p-value = 0.02). Provid-
ng positive offset will mitigate the sight restriction for vehicles
urning left from opposing left-turn lanes (Joshua and Saka, 1992;

cCoy et al., 1992). With better visibility, both drivers would be
etter able to react and to lower crash severity.

Protected left-turn phase was associated with less severe
rashes (Coef. = −0.1169); however, compound phase was not sig-
ificant and it was combined with permissive phase. One obvious
eason is that at a compound signal left-turning and opposing
hrough traffic is usually higher than that for a permissive signal. In
ddition, compound is the most complicated phasing. Crash records
ndicated that left-turn crashes occurring under protected left-turn

hases typically resulted as left-turn vehicles were not cleared
rom the intersection upon the onset of the opposing through
ehicle’s green signal. Of these crashes, left-turn vehicles collided
ith vehicles which just entered intersections and therefore the

hrough vehicles’ speeds were low, while under permissive left-
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Table 2
Models for pattern 5 left-turn crashes

Variables Ordered logit estimates Generalized ordered logit estimates

Coef. S.E. Coef. S.E.

Beta
Logarithm of the opposing through traffic in the crash hour 0.0148 0.0042 0.0148 0.0042
Positive left-turn lane offset (vs. zero or negative left-turn lane offset) −0.1804 0.0784 −0.1813 0.0784
Protected left-turn phasing on entering approach (vs. compound or permissive left-turning) −0.2586 0.0882 −0.2608 0.0882
Standardized all-red time for opposing through movement −0.6615 0.2501 −0.6642 0.2500
Crash alcohol/drug involved (vs. no) 0.2146 0.1829 −0.1093 0.2166

Left-turning driver age (base: 25 ≤ age ≤ 79)
Very young (≤19) −0.4098 0.1107 −0.4136 0.1109
Young (20 ≤ age ≤ 24) −0.1290 0.1085 −0.1301 0.1085
Old (≥80) 0.5743 0.2276 0.5809 0.2284

Impact point of through vehicle (base: is front)
Front left −1.1913 0.1125 −1.1898 0.1125
Front right −0.2991 0.0970 −0.2983 0.0970
Back −1.6884 0.2963 −1.6876 0.2967
Back left and right −0.9875 0.1596 −0.9900 0.1596

Speed ratio of opposing through vehicle (estimated speed/speed limit) 0.1831 0.1065 0.1849 0.1065
Safety equipment in use vs. not used −0.6708 0.1206 −0.6672 0.1203

Gamma 2
Crash alcohol/drug involved vs. no – – 0.3725 0.1671

Gamma 3
Crash alcohol/drug involved vs. no – – 0.5249 0.2617

Gamma 4
Crash alcohol/drug involved vs. no – – 1.7161 0.5439

Alpha
Constant 1 −1.7359 0.2042 −1.7482 0.2042
Constant 2 −0.6055 0.2014 −0.5981 0.2013
Constant 3 1.0092 0.2027 1.0276 0.2031
Constant 4 3.9801 0.2916 4.1800 0.3159

Summary statistics
Number of observations 2226 2226
Log likelihood at convergence −2949.82 −2944.92
AIC 5935.64 5931.86
Pseudo R2 0.0440 0.0466

Note: dash (–) indicates data not applicable or unavailable.

Table 3
Marginal effects and standard errors (in parentheses) for Pattern 5 crashes based on generalized ordered logit model

Variables Crash injury severity

None injury Possible injury Non-incapacitating injury Incapacitating injury Fatal

Logarithm of the opposing through traffic in
the crash hour

−0.0031 (0.0009) −0.0005 (0.0002) 0.002 (0.0006) 0.0016 (0.0005) 0.0001 (0.00004)

Positive left-turn lane offset (vs. zero or
negative left-turn lane offset)

0.0379 (0.0164) 0.0065 (0.0029) −0.0238 (0.0103) −0.0194 (0.0084) −0.0012 (0.0006)

Protected left-turn phasing on entering
approach (vs. compound or permissive
left-turning)

0.0556 (0.0192) 0.0078 (0.0024) −0.0348 (0.012) −0.0269 (0.0088) −0.0017 (0.0007)

Standardized all-red time for opposing
through movement

0.1389 (0.0523) 0.0242 (0.0097) −0.0873 (0.0331) −0.0713 (0.0269) −0.0045 (0.002)

Crash alcohol/drug involved (vs. no) 0.0233 (0.047) −0.0886 (0.0388) 0.0111 (0.0447) 0.0299 (0.0323) 0.0243 (0.0138)

Left-turning driver age (base: 25 ≤ age ≤ 79)
Very young (≤19) 0.0909 (0.0254) 0.008 (0.0021) −0.0562 (0.0155) −0.0402 (0.0098) −0.0025 (0.0008)
Young (20 ≤ age ≤ 24) 0.0277 (0.0235) 0.004 (0.0029) −0.0173 (0.0147) −0.0135 (0.0109) −0.0008 (0.0007)
Old (≥80) −0.107 (0.0362) −0.0372 (0.02) 0.0638 (0.0188) 0.0752 (0.0349) 0.0052 (0.0029)

Impact point of through vehicle (base: is front)
Front left 0.2745 (0.0268) −0.0122 (0.008) −0.1586 (0.0148) −0.0978 (0.008) −0.0059 (0.0014)
Front right 0.0643 (0.0215) 0.0079 (0.0022) −0.0401 (0.0134) −0.0302 (0.0093) −0.0019 (0.0007)
Back 0.3983 (0.0635) −0.0846 (0.0306) −0.2065 (0.026) −0.1014 (0.0096) −0.0058 (0.0014)
Back left and right 0.2322 (0.0393) −0.0154 (0.0111) −0.1341 (0.0206) −0.0781 (0.0094) −0.0046 (0.0012)

Speed ratio of opposing through vehicle
(estimated speed/speed limit)

−0.0387 (0.0223) −0.0067 (0.004) 0.0243 (0.014) 0.0198 (0.0115) 0.0013 (0.0008)

Safety equipment in use vs. not used 0.124 (0.0196) 0.0413 (0.0104) −0.0739 (0.0109) −0.0854 (0.0181) −0.0059 (0.0019)
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Table 4
Models for Pattern 8 left-turn crashes

Variables Ordered logit estimates Generalized ordered logit estimates

Coef. z Coef. z

Beta
Logarithm of the near-side crossing through traffic in the crash hour 0.1517 0.0770 0.1532 0.0762

Left-turn lane offset of entering approach (base: negative)
Zero offset −0.7168 0.3657 −0.6746 0.3646
Positive offset −0.6473 0.3596 −0.5982 0.3582

Driver ejected vs. no 1.9194 0.6529 1.9246 0.6524
Crash alcohol/drug involved vs. no 1.3422 0.4597 0.4518 0.5315

Gamma 2
Crash alcohol/drug involved vs. no – – 0.2609 0.3953

Gamma 3
Crash alcohol/drug involved vs. no – – 1.1922 0.4988

Gamma 4
Crash alcohol/drug involved vs. no – – 2.1689 0.7802

Alpha
Constant 1 −0.5425 – −0.5131 0.5966
Constant 2 0.4216 – 0.4617 0.5996
Constant 3 1.8879 – 1.9865 0.6038
Constant 4 4.2123 – 4.5611 0.7050

Summary statistics
Number of observations 436 436
Log likelihood at convergence −616.43 −612.37
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ote: dash (–) indicates data not applicable or unavailable.

urn phase, left-turn vehicles usually collided with high speed
pposing through traffic.

Another key variable for signal control is all-red time for oppos-
ng through traffic. In the state of Florida, FDOT recommends an
ll-red interval of 1 s for approach speeds up to 50 mph, and 2 s for
pproach speeds above 50 mph (Traffic Engineering Manual, 2007).
t each intersection, all-red times could be increased as necessary

o fit the specific conditions. The safety effects of the standardized
ll-red time (defined as the all-red time divided by the crossing dis-
ance) and the differences between the real values and the standard
alues for all-red intervals have been explored in the models. The
esult showed that providing longer standardized clearance time
ended to reduce crash severity (Coef. = −0.6642). For the approach
ith permissive left-turn phase, left-turners might sneak into inter-

ections on a permissive green waiting to make a left-turn, and
hey might use the clearance interval if there were not enough
aps. Under protected left-turn phase, left-turners might beat red-

ight and they were probably unable to clear from intersections.
n both situations, if the crash occurred with more all-red time
rivers would have more time to react and therefore to reduce crash
everity.

f
w
i
i

able 5
arginal effects and standard errors (in parentheses) for Pattern 8 crashes based on gene

ariables Crash injury severity

None injury Possible injury

ogarithm of the near-side crossing
hrough traffic in the crash hour

−0.0311 (0.0184) −0.0072 (0.0047)

eft-turn lane offset of entering approach
base: negative)

Zero offset 0.1404 (0.0940) 0.0263 (0.0152)
Positive offset 0.1202 (0.0893) 0.0282 (0.0232)

river ejected vs. no −0.2344 (0.0630) −0.1478 (0.0478)
rash alcohol/drug involved vs. no −0.0833 (0.2089) −0.0896 (0.1334)
1250.86 1248.74
0.0215 0.0279

Driver’s age had significant effect on crash injury severity. Com-
ared to people in middle age, very old people (age ≥ 80) were
ore likely to be involved in severe left-turn crashes, while very

oung (age ≤ 19) and young people (19 < age ≥ 24) were more likely
o sustain severe injuries, which is consistent with previous lit-
rature (Evans, 2004). For very old drivers, their weak physical
ondition might explain the higher probability of injury and fatality.
ice (Rice, 2007) summarized that approximately 27% (or 2450) of

ntersection fatalities involved people age 65 years or older. Accord-
ng to 2001 National Household Travel Survey, the elderly had the
ighest fatal crash rate (fatalities per 100 million vehicles miles of
ravel), around 4.2 and 11 for age group 80–84 and older than 85,
espectively (Liss et al., 2001).

Of the crash related variables, the points of impact of both
ehicles were the most significant variables to affect crash
everity. Coefficients and marginal effects of severe injuries (non-
ncapacitating injury, incapacitating injury, and fatal) for the factors

ront left, front right, back, back left and right were all negative,
hich showed that crashes were more likely to involve severe

njury if a through vehicle was struck at the front. The energy of
nvolved vehicles was translated into greater forces being exerted

ralized ordered logit model

Non-incapacitating injury Incapacitating injury Fatal

0.0156 (0.0097) 0.0201 (0.0118) 0.0026 (0.0020)

−0.0709 (0.0488) −0.0848 (0.0528) −0.0109 (0.0088)
−0.0588 (0.0429) −0.0791 (0.0617) −0.0105 (0.0105)

−0.0354 (0.0852) 0.3300 (0.1068) 0.0877 (0.0915)
−0.1706 (0.0928) 0.1836 (0.1263) 0.1599 (0.0995)
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Table 6
Models for total left-turn crashes

Variables Ordered logit estimates Generalized ordered probit estimates

Coef. z Coef. z

Beta
Left-turn crash conflicting pattern (base: Pattern 6)

Pattern 5 1.5535 0.3613 0.8858 0.1943
Pattern 8 1.9124 0.3794 1.1122 0.2056
Patterns 1–4, 7 and 9 0.8874 0.3667 0.4942 0.1969

Conflicting vehicle types (base: other combination)
Both vehicles in large size −0.3482 0.1120 −0.1951 0.0655
Motorcycle involved 0.8471 0.2750 0.5057 0.1637

Lighting condition: dark with street light vs. others −0.2610 0.0757 −0.1474 0.0444
Maximum of speed ratios (estimated speed/speed limit) of two involved vehicles 0.1729 0.0865 0.1029 0.0509
Driver ejected (vs. no) 0.6871 0.2851 0.3882 0.1618
Safety equipment in use (vs. not used) −0.4669 0.1038 −0.2656 0.0613
Crash alcohol/drug involved (vs. no) 0.6982 0.2503 0.0618 0.1717

Point of impact of entering left-turning vehicle (base: front and front right)
Back right −0.6947 0.1014 −0.4053 0.0602
Back −1.3157 0.2265 −0.7727 0.1290
Back left −0.9233 0.1960 −0.5543 0.1169
Front left −0.2208 0.1032 −0.1371 0.0607
Other −0.7372 0.1961 −0.4989 0.1202

Point of impact of another vehicle (base: front and front left)
Front right −1.0130 0.0980 −0.6053 0.0576
Back right −0.5116 0.0885 −0.2907 0.0522
Back and back left −1.8358 0.2056 −1.0473 0.1181
Other −1.0140 0.1350 −0.5900 0.0798

Driver age of left-turning vehicle (base: age ≥ 25)
Very young (≤19) −0.4238 0.0963 −0.2446 0.0566
Young (20 ≤ age ≤ 24) −0.2225 0.0955 −0.1503 0.0565

Driver age of another vehicle (base: 20 ≤ age ≤ 64)
Very young (≤19) −0.2271 0.1028 −0.1441 0.0611
Old (≥65) 0.2473 0.1421 0.1500 0.0843

Gamma 2
Crash alcohol/drug involved vs. no – – 0.3359 0.1174
Point of impact of another vehicle: other vs. base case – – 0.1607 0.0974

Gamma 3
Crash alcohol/drug involved vs. no – – 0.4597 0.1869
Point of impact of another vehicle: other vs. base case – – 0.4342 0.1632

Gamma 4
Crash alcohol/drug involved vs. no – – 0.8914 0.2726
Point of impact of another vehicle: other vs. base case – – 0.4342 0.1632

Alpha
Constant 1 −0.4553 – −0.3155 0.2076
Constant 2 0.6766 – 0.3766 0.2081
Constant 3 2.2959 – 1.3606 0.2080
Constant 4 5.1588 – 2.7590 0.2200

Summary statistics
Number of observations 3145 3145
Log likelihood at convergence −3962.19 −3956.88
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n the occupants of involved vehicles when they collided. The
ariable speed ratio of through vehicle was marginally significant
o increase crash injury (Coef. = 0.1849; p-value = 0.0850), which is
onsistent with the previous studies (Kweon and Kockelman, 2003).
he result also showed that using the seat belt would reduce crash
everity significantly (Coef. = −0.6672; p-value <0.0001).
.2. Pattern 8 left-turn crashes

There were 436 Pattern 8 left-turn crashes, which account for
4% of total left-turn crashes, while more than 30% of left-turn fatal
rashes were from this pattern. The partial proportional odds model

4

i
i

7978.38 7977.75
0.0816 0.0829

ith logit function had better performance (AIC = 1248.74). The
stimates and the marginal effects are presented in Tables 4 and 5,
espectively. The variable crash alcohol/drug involved was identi-
ed to have varying coefficients for different injury levels. Near-side
rossing through traffic in the crash hour, zero or positive left-turn
ane offset of entering approach, and crashes with drivers ejected

ere also identified to be significant.
.3. Total left-turn crashes

The total number of left-turn crashes was 3145 for the selected
ntersections over the period of study. Both crash alcohol/drug
nvolved and point of impact of another vehicle were identified to
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iolate parallel-lines assumption, with p-values 0.003 and 0.041
n the Wald test, respectively. Partial proportional odds models

ith either logit or probit function were fitted with these two fac-
ors differing across injury levels. The p-value of the Wald test for
arallel-lines assumption for the final model was 0.8120, which

ndicated that the final model did not violate the parallel-lines
ssumption. The partial proportional odds model with probit func-
ion had better performance with the largest Pseudo R2 (0.0829)
nd the smallest AIC (7977.75) as shown in Table 6.

Results showed that Pattern 5 was more severe than Pattern
(conflicting with opposing right-turn vehicle. Coef. = 0.8858),

nd Pattern 8 was the most severe left-turning conflicting pat-
ern (Coef. = 1.1122). Crashes occurred at night but with street
ight and safety equipment in use will reduce crash injury level,
oef. = −0.1474 and −0.2656, respectively. Crashes involved motor-
ycle, with drivers ejected from vehicle, and higher speed ratio of
nvolved vehicle tend to produce more severe left-turn crashes,
oef. = 0.5057, 0.3882, 0.1029, respectively. For both involved vehi-
les, the front is the most dangerous impact point. Previous studies
howed that young drivers were more likely involved in crashes,
owever, the negative coefficients −0.2446 and −0.1441 indicated
hat they were less likely to be injured.

. Summary and discussion

This paper presents a series of crash injury severity models
or left-turn crashes. Crash injury severity is categorized into five
evels in increasing of severity. The literature suggests that the
ogit model’s assumption of independent errors for alternatives
s inconsistent with the fact that the crash injuries are ordered.
he parallel-lines assumption (or proportional odds assumption)
f commonly applied ordered probability models is usually too
estricting. This assumption may be violated only by one or a few
f the included variables. A partial proportional odds model where
he parallel-lines constraint is relaxed only for those variables when
t is not justified is applied in this study.

Partial proportional odds models were developed for left-
urning traffic colliding with opposing through traffic (Pattern 5)
r with near-side through traffic (Pattern 8), and all of the left-turn
ollisions that occurred at 197 signalized intersections in the Cen-
ral Florida area over 6 years. A massive data collection effort was
ndertaken for these intersections including intersection approach
eometric design features, traffic control and operational features
with signal plan), traffic characteristics (with turning movements),
nd crash data. Left-turn crashes were located to the crash sites
here they occurred, which enables the researchers to specify

he effect of attributes of intersection approach features on crash
everity. The partial proportional odds models perform consistently
etter for Patterns 5 and 8, and total left-turn crashes. By using
artial proportional odds models, the interpretation of the param-
ters yields greater insight concerning contributing factors, i.e., it
evealed the increasing crash injury severity due to alcohol and/or
rugs.

Of traffic characteristics, the estimated opposing through traffic
nd the near-side crossing through traffic in the hour of crash are
dentified to be significant for Patterns 5 and 8 crash injury, respec-
ively. Traffic volume has been identified as the most significant
actor influencing crash occurrence. This study found that neither
he total approach volume, nor the entire intersection volume, but

ather the specific vehicle movements affected crashed injury sig-
ificantly. With the real traffic volume at the time of crash available

n the future, a more realistic relationship can be established.
Of intersection geometric design features, left-turn offset has

een identified to be significant for both Patterns 5 and 8. Of
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raffic control and operational features, protected left-turn signal
nd all-red time on opposing through movements have significant
nfluences on Pattern 5 crash injury. Crashes occurred at night at
ntersections with street lights are associated with lower left-turn
rash injury level. All these are viable factors that traffic engineers
ave some control over. Therefore, based on these findings more
fficient countermeasures can be developed to mitigate left-turn
rash severity. Many crash related variables were identified to be
ignificant which include: alcohol/drug use, vehicle type, driver age,
mpact point, speed ratio, safety equipment, and driver ejection.
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