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Section 2 

Transmission Lines and Cables 

Introduction 

In a power system, power is transferred from one busbar to another via a network of 
transmission lines, usually in the form of three-phase overhead lines or, in densely 
populated urban areas, cables. In this section we will look at how transmission lines are 
modelled, look at the factors that affect the physical parameters of the line and examine the 
relationship between line voltages and the flow of power and reactive power along the line. 

 
Learning Outcomes 
 
On completion of this section you will be able to: 

 Model the behaviour of three-phase transmission overhead lines and cables using a 
simple per phase circuit representation. 

 Carry out circuit analysis for short and medium length transmission lines. 

 Describe the relationship between line voltages and line power and reactive power 
flows. 

 Calculate real and reactive power flows between two busbars with known voltages 

 Calculate busbar voltages from a knowledge of power and reactive power line 
flows 

 Calculate line power losses 

Time 

You will need between 2 and 3 hours for this section. 

Resources 

Calculator, pen and paper. 
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2.1 Circuit Representation of Transmission Lines 

Fig. 2.1 shows a single-phase line consisting of a conductor suspended above the ground. 
The line is characterised by its resistance R, its series self-inductance L, its shunt 
capacitance to earth C and its shunt leakage conductance G, which represents the leakage 
current to earth. 
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Fig. 2.1 Single-phase line 

A three-phase line includes mutual inductance and capacitance effects, but each of its’ 
three conductors can be modelled by an equivalent single-phase line with modified 
parameters. 

 

2.1.1 Distributed parameter model 

All these parameters are of course distributed along the entire length of the line (Fig. 2.2) 
and are usually expressed in Ohms per unit length (Ω/km), Henry per unit length (H/km), 
Farad per unit length (F/km) and Siemens per unit length (S/km). 
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Fig. 2.2 Distributed parameter model. 
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2.1.2 Nominal line models 
It is usual practice to perform circuit calculations using lumped circuit elements obtained 
simply by multiplying the distributed parameters by the length of the line. A line is usually 
represented by either the T network or the π network shown in Fig. 2.3.  
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Fig. 2.3 Nominal line models 

2.1.3 Short-line model 
For fully-loaded lines less than 100km long, the current flow in the shunt elements is less 
than 1% of the full-load current. In this case, the shunt elements may be neglected giving 
the short line model shown in Fig. 2.4. 
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Fig. 2.4 Short line model 

Normally the series reactance of the line is much bigger than the resistance and it may 
sometimes be possible, especially for short urban lines, to disregard the resistance giving 
the simplified line model shown in Fig. 2.5. 
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Fig. 2.5 Simplified short line representation 
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2.2 Relationships between Line Parameters and Physical Layout 

2.2.1 Line inductance 

Fig. 2.6 shows the relationship between physical layout of a three phase overhead line and 
its’ series line inductance. 
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Fig. 2.6 Line inductance 

 

To simplify operation of the power system it is desirable to have low values of inductance, 
i.e. small D and large R. 

Decreasing D reduces the insulation between lines and is therefore limited by the working 
voltage. 

Increasing R causes an increase in conductor weight and therefore cost. 

One method employed to increase the effective radius is the use of bundle conductors, as 
shown in Fig. 2.7. 

 

Cross-section of line for one-phase in the UK transmission system:

275kV

approx 30cms

400kV

approx 30cms

 

Fig. 2.7 Bundle conductors 
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In comparison to a single solid conductor, bundle conductors:   

 increase effective radius and therefore reduce inductance 

 reduce skin effect 

 have a larger surface area and therefore better cooling 

 are easier to handle during construction 

 

2.2.2 Line resistance 

The resistance of a line varies between 0.5Ω/km for an 11kV distribution line and 
0.015Ω/km for a 400kV overhead line or a 33kV underground cable. 

Resistance includes skin effect, which causes an increase in resistance of about 5% (in 
comparison to dc) in a 2.5cm diameter copper conductor operating at 50 Hz. 

 

2.2.3 Line capacitance 

The capacitance per unit length of the line shown in Fig. 2.6 above is given by the 
equation: 

( )RD
C

/ln
2 0πε

=  

for a given working voltage and frequency, dv/dt is fixed, so to minimise charging current, 
i (i = C dv/dt), the line capacitance should be as small as possible. A low value of C 
implies large D and small R conflicting with the requirements for small L. 

Typical values for capacitive reactance (1/ωC) are 200kΩ/km for a transmission line and 
4kΩ/km for an underground cable. The capacitive charging current in an underground 
cable is thus much higher than in an overhead transmission line. 

 

2.2.4 Line conductance 

Line shunt conductance G models losses due to corona (discharge through air) and leakage 
currents across insulator surfaces. Typical losses on a 400KV line are 600 W/km in fine 
weather and 90 kW/km in snow or fog. 
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2.3 Underground Cables vs. Overhead Lines 

Cables are 15-20 times more expensive than overhead lines, because: 

 insulation cost (overhead lines uses air insulation, which is free) 

 the maximum operating temperature for a cable is typically 70 or 90°C, so more copper 
must be used to reduce losses and give a reasonable operating temperature 

 installation cost: trench, continuous path across the ground 

Plus, the large capacitive charging current limits useful lengths of cables to 15-20 km. For 
longer lengths of cable (e.g. under the sea) dc transmission is employed. 

 

converter
50 Hz

converter
50 Hz

dc link in cable

 

Fig. 2.8 Undersea cable dc link arrangement  
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2.4 Line Power and Reactive Power Flows 

2.4.1 Line Power Flow 

The receiving end voltage Vr is shown as our reference phasor in Fig. 2.9. φ is the angle by 
which the current I lags the receiving-end voltage Vr, θ is the phase angle of the line 
impedance given by arctan (ωL ⁄ R) and δ is the angle by which the sending-end voltage Vs 
leads Vr. A phasor diagram representation of the above quantities is also shown. 
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Fig. 2.9 Phasor diagram for short transmission line 

We can calculate the complex power at each end from the equations 

IVS sQjPs ss =+=   (2.1) 

IVS rrrr QP =+=   (2.2) 
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Thus, 
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( )δ+θ−θ= coscos
Z
VV

Z
VV

P rsss
s  (Watt per phase) (2.6) 

( ) θ−δ−θ= coscos
Z
VV

Z
VV

P rrsr
r  (Watt per phase) (2.7) 

Equations (2.6) and (2.7) may be simplified further if we make the practical assumption 
that the line resistance R is negligible compared with its reactance ωL. In other words, if 
we assume that R = 0, Z = ωL = XL and θ = 90°. Because we are neglecting the line 
resistance, the real line powers at each end are equal and given by: 

δ== sin
L

rs
rs X

VV
PP  (Watt per phase) (2.8) 

Equation 2.8 is very important in understanding the limits of power transmission capability 
of power lines. The power output to the receiving-end is maximum when sin δ = 1, i.e. 
when  δ = 90°. 

Note that the busbar voltages at both line ends Vs and Vr are practically constant and can 
only change within very tight limits. Hence, the only way in which we can vary the real 
power transmitted through the line is to vary the angle δ, usually referred to as the load 
angle or sometimes the power angle. 

Equation (2.8) shows that as the load power increases, δ increases to a maximum value of 
90°. The maximum line power Pmax is then given by: 

L

rs

X
VV

P =max  (Watt per phase)  (2.9) 

Any further attempt to increase line power will cause the transmission system to collapse, 
i.e. the system will step out of synchronism. We have in fact arrived at the static stability 
limit of the line. 

If the flow of power is reversed, meaning that power transfer is from right to left in Fig. 
2.8, δ will be negative (i.e. Vs lagging Vr)  

Interestingly, the above analysis tells us that in an ac power system, the voltage magnitudes 
at either end of a transmission line do not determine the direction of power transfer along 
the line. The voltage phase difference does. 

The magnitude and direction of the flow of real power on a line depends on the phase 
angle between the sending end voltage and the receiving end voltage. Power flows from 
the end with the leading voltage to the end with the lagging voltage. The magnitude of 
power flowing down the line increases with an increasing phase difference. 
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2.4.2 Line Reactive Power Flow 
From (2.4) and (2.5), we may write: 

( )δ+θ−θ= sinsin
Z
VV

Z
VV

Q rsss
s  (VAr per phase) (2.10) 

( ) θ−δ−θ= sinsin
Z
VV

Z
VV

Q rrsr
r  (VAr per phase) (2.11) 

Ignoring line resistance R, equation (5.17) may be written as: 
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Q −δ= cos   (VAr per phase) (2.12) 

Under normal operating conditions, cosδ is pretty close to unity and (2.12) may be 
simplified further to: 

r

rL
rs V

QX
VV ≈−   (2.13) 

We can express this by saying that the amount of reactive VArs consumed at the receiving 
end is roughly proportional to the voltage difference in voltage magnitudes at either end of 
the line, the greater the voltage difference the stronger the flow of reactive power. Also, 
the flow of reactive power is in the direction of the lowest voltage. In other words, if there 
is a difference between the magnitudes of the voltages at the sending and receiving ends of 
the line, lagging reactive power will tend to flow towards the end with the lower voltage. 

Another way of looking at this is to say that if there is a deficiency of reactive power at a 
point in the network (i.e. a lagging reactive power load), this will have to be supplied from 
the connecting lines and the voltage at that point will fall. Conversely, if there is a surplus 
of reactive power generated at a point (i.e. a leading power factor load), then the voltage 
will rise. This means that if we can manage to supply the reactive power requirement of the 
load locally so that the line reactive power is zero, then there will be no voltage drop 
between the two ends of the line, which is great. 

The magnitude and direction of reactive power flow on a line depends on the difference in 
magnitude between the sending end voltage and the receiving end voltage. Reactive power 
flows from the end with the higher voltage to the end with the lower voltage. The 
magnitude of reactive power increases with an increasing voltage difference. 
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2.4.3 Line Power Loss 

Transmission lines will of course have a certain series resistance R and consequently a 
power loss Ploss given by 

Ploss = R ⏐I⏐2  (Watts per phase) 

We will now derive an approximate formula for Ploss in terms of average line quantities to 
show how the line power loss varies with line power and reactive power flows. 

If we define the average values of line voltage, current, power and reactive power as 
measured say, at the middle of the line, by the following equations 

Pav = (Ps + Pr) ⁄ 2, Qav = (Qs + Qr) ⁄ 2, Vav = (Vs + Vr) ⁄ 2 and Iav = (Is + Ir) ⁄ 2 

We can then write the approximate formula 

avavavav QjP IV≈+  

Hence 

av

avav
av

QjP
V

I
+

≈ , and 
av

avav
av

QjP
V

I
−

≈  

Multiplying the above two equations we obtain 
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By substituting for  ⏐Iav⏐2  we obtain the following approximate equation for Ploss 

( )
2

22

av

avav
loss V

QPR
P

+
≈   (Watts per phase) (2.14) 

Equation (2.14) tells us that real and reactive line powers make an equal contribution to the 
real power loss. We should therefore try to minimise the line reactive power flow if we 
wish to reduce the power loss. This is another reason why reactive power is often 
generated at or near the busbar where it is needed, often by installing shunt capacitors for 
this purpose. 

The equation also tells us that the real power loss varies inversely with the square of the 
line voltage. This is a second very good reason for transmitting power at high voltages. 
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Exercise 2.1 

How much power can be transmitted over a 30 mile long, 33 kV line which has a total 
reactance of 6.3 Ω per phase and a total resistance of 0.2 Ω per phase? 
Turn to the end of the book for suggested answers to the exercise 

 

Exercise 2.2 

Have a look at Equations 2.9 and 2.14. Summarise the relationship between line voltage 
and maximum transmittable power and line voltage and power loss. What practical 
implications does this have for transmission voltages? 
Turn to the end of the book for suggested answers to the exercise 
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2.5 Transmission Line Calculations 

Worked Example 2.1 

A three-phase 132 kV, 100 miles long transmission line has a resistance of 0.1 Ω per mile 
per phase, phase inductance of 1.5 mH per mile per phase, and phase capacitance of 9 nF 
per mile per phase. Calculate the sending end power if the receiving end voltage is 132 kV 
and the total receiving end power is (90 + j 45), MW and MVArs. 

The line is short enough to use lumped circuit parameters and to ignore the effects of shunt 
leakage, but not short enough to ignore the effects of leakage capacitance. In other words, 
it is a medium length line and we will use the π network representation of Figure 3.3. 

Our first task is to compute the lumped circuit parameters. 

R = 0.1 × 100 = 10 Ω per phase 

L = 1.5 × 10-3 × 100 = 0.15 H  ⁄ phase, 

⇒ XL = 2π × 50 × 0.15 = 47.1 Ω  ⁄ phase 

C = 9 × 10-9 × 100 = 0.9 × 10-6 F ⁄ phase,  

⇒ Y = j 2π × 50 ×  0.9 × 10-6 ⁄ 2 = j 0.14 × 10-3 Ω-1 ⁄ phase. 

where Y is the admittance of half the lumped C at the end of the line. 

We know the receiving-end power and voltage, so we can calculate the receiving-end 
current Ir. 

The per phase complex power at the receiving-end Sr is given by 

1530
3
45

3
90 jjrrr +=+== IVS  (MW and MVArs per phase) 

Where rI  is the complex conjugate of rI  

As usual, we choose the voltage at the receiving end as our reference phasor (i.e. Vr = Vr 
∠ 0°), so that 

A8.1966.393
310132
10151030

3

66
jj

r +=
×

×+×
=I  

Thus 

A 6.26  440 A 8.1966.393 °−∠=−= jrI  

Next, we need to calculate the sending-end voltage Vs. To do so we need to compute the 
voltage drop across the series impedance  

Z = R + j ωL. 

The shunt current Ishr is given by  

Ishr.= Vr Y =(132 × 103 ⁄ √3) ( j 0.14 × 10-3) = j 10.7 A. 
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The series current Iser is given by 

Iser = Ishr + Ir = 393.6 – j 186.1 A = 435 ∠ – 25.3° A. 

The voltage drop across Z is then given by 

ΔV = Z Iser 

        =(10 + j 47.1) (393.6 – j 186.1) = (12.7×103 + j 16.7×103)  

      = 20.9×103 ∠ 52.7° Volts. 

The sending-end voltage Vs is given by 

Vs = Vr + ΔV = (132 × 103 ⁄ √3) + (12.7×103 + j 16.7×103)  

     = (88.9×103 + j 16.7×103)= 90.45×103 ∠ 10.6° Volts per phase. 

The next step is to calculate the sending end current. In order to do this we must first 
calculate the shunt current Ishs given by  

Ishs = Vs Y = (88.9×103 + j 16.7×103) ( j 0.14 × 10-3) = (−2.3 + j 12.4) A 

The sending-end current Is is thus given by 

Is = Iser + Ishs = (393.6 – j 186.1) + (− 2.3 + j 12.4) = (391.3 – j 173.7) 

   = 428.1 ∠ − 23.9° A. 

And finally, the sending-end power Ss is given by 

( ) ( )
phaseper VAr  andW 1093.211091.31

5.341072.389.231.4286.101045.90
66

63

×+×=

°∠×=°∠°∠×==

j

IVS sss  

or 95.73 MW and 65.8 MVAr three phase. 

Note that compared with the receiving end quantities, the sending end voltage has a higher 
rms value (156.7 kV line-to-line voltage compared with 132 kV) and leads Vr by 10.6°. 
Also, we lose 5.73 MW and 20.8 MVAr in transmission. More surprisingly, the receiving-
end current has an rms value of 440 A when the sending-end current measures only 428.1 
A. 
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Exercise 2.3 

In the above example, why is the receiving end current higher than the sending end 
current? 

Turn to the end of the booklet for suggested answers 

Exercise 2.4 

Now, perform the above calculation again, this time using the short line model of Fig. 3.5. 
Compare your results with those obtained by using the π model and comment on the 
accuracy of the calculations. 

Turn to the end of the booklet for suggested answers. 

 

Summary 

Just a short summary of the work we’ve covered in this unit: 

 The electrical behaviour of power transmission lines may be modelled by relatively 
simple lumped parameter circuit models in which the distributed inductance, 
capacitance, resistance and conductance of the transmission line is represented by 
separate inductors, capacitors and resistors. 

 The magnitude and direction of the flow of real power on a line depends on the 
phase angle between the sending end voltage and the receiving end voltage. Power 
flows from the end with the leading voltage to the end with the lagging voltage. 
The magnitude of power flowing down the line increases with an increasing phase 
difference. 

 The magnitude and direction of reactive power flow on a line depends on the 
difference in magnitude between the sending end voltage and the receiving end 
voltage. Reactive power flows from the end with the higher voltage to the end with 
the lower voltage. The magnitude of reactive power increases with an increasing 
voltage difference. 

 The real power losses on a line are proportional to the sum of the squares of real 
and reactive power flows down the line and inversely proportional to the square of 
the line rms voltage. 

 

 


