
Seminar 5: A GARCH analysis of the excess returns on the FTSE All Share Index 
 
 
 
The objectives of this seminar are to: 
 

• Test for ARCH effects in a series of excess returns on the FTSE All Share Index 
(excess market returns). 

• Estimate and test a GARCH model for the excess market returns. 
• Test for leverage effects and estimate asymmetric GARCH models for the excess 

market returns. 
• Test for a time varying risk premium in the excess market returns using different 

versions of GARCH-in-Mean (GARCH-M) models. 
 
The learning outcomes will be to develop your understanding of: 
 

• Testing for ARCH effects in Eviews. 
• Estimating GARCH models in Eviews. 
• Misspecification testing of GARCH models and their application in Eviews. 
• GARCH models which allow for an asymmetric response of volatility to past 

shocks. 
• GARCH models which incorporate a time varying risk premium in the 

conditional mean (GARCH-M).  
• Estimating and testing asymmetric GARCH and GARCH-M models in Eviews. 

 
 
The workfile for this analysis is ftse_all_sem5.wf1 which contains daily data on the 
FTSE All Share Index and the 3-month Treasury Bill rate (converted to a daily rate) for 
the period 1st January 2003 – 19th January 2006. 
 
 
1. Background and overview 
 
 
The basic GARCH model for the excess market returns can be written as follows:  
 

( )1,0~

,

2
1

2
10

2

,

NIDv

v

rr

t

ttt

ttt

ttftm

−− ++=

=

+=−

βσαεασ

σε

εμ

 

  
The first equation is the conditional mean equation.  We will begin the analysis by 
assuming a constant risk premium ( )μ and relax this assumption subsequently.  The other 
three equations describe the conditional variance.   



In particular, in the above specification, we’ve assumed that: 
 

i) The conditional variance follows a GARCH(1,1) model (a common 
assumption in empirical finance). 

ii) The conditional error distribution is Gaussian:  
 

( ) ( )2
1 ,0~1,0~ tttt NNIDv σε −Ω⇒  

 
As always, we need to test whether these assumptions relating to the statistical model 
hold for our data i.e., we need to carry out misspecification testing.  For the GARCH 
model this will involve: 

• Testing whether the NID assumption holds for the standardized residuals. 
• Estimating and testing extensions to the basic GARCH model.   

 
We will go through the tests on the standardized residuals below.  On the second point, 
an important extension to the basic GARCH model is to allow for an asymmetric 
response of volatility to past shocks.  Typically volatility may respond more to bad news 
(negative shocks) than good news (positive shocks) of the same magnitude.  In the 
context of equity returns this asymmetry may be due to leverage effects: negative shocks 
cause the value of the firm to fall which raises the debt-equity ratio thereby increasing the 
risk of bankruptcy (debt-equity ratios are a key predictor of the probability of default in 
credit scoring models).  
 
There are two main models which are useful for modelling asymmetric volatility: 
Threshold ARCH (TARCH) and Exponential GARCH (EGARCH) (see lecture 6).  The 
asymmetry analysis begins with a general test for asymmetries in volatility called a Sign 
and Size Bias Test.  Then, based on the evidence of this test, we will estimate and test for 
asymmetries in TARCH and EGARCH models. 
 
The analysis culminates with the estimation of a time-varying risk premium model for the 
excess market returns. Applying CAPM to the market portfolio implies the following 
model for the excess market returns: 
 
 ttftm rr ελσ +=− 2

,
 
whereλ is the market price of risk (see Lectures 2, 6 and Cuthbertson and Nitzsche pp 
137-138 and pp 659-661). The predictions of CAPM for the excess market returns are 
that the intercept is zero (no abnormal returns) and 0>λ (implying a positive risk/return 
trade-off).  In this version of the GARCH model the conditional variance enters the mean 
equation directly.  This is known generally as a GARCH-M model.  Specifically, based 
on the asymmetry analysis, we will estimate EGARCH-M and TARCH-M models to test 
CAPM.   
 
 
 
 



2. Test for ARCH effects in the excess market returns 
  

i) Generate the excess market returns ftm rr −,   
 

Click Genr on the workfile toolbar and enter: 
 
ex_ret=dlog(ftse_all)-rf_daily 

 
 
 
 
 

 
As always, reporting line graphs and summary statistics constitute an important prelude 
to the main analysis.  Comment on the following output: 
 
 
 
Figure 1: Line graph of ex_ret 
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Table 1: Summary statistics for ex_ret 
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Series: EX_RET
Sample 1/01/2003 1/19/2006
Observations 776

Mean       0.000514
Median   0.000743
Maximum  0.050803
Minimum -0.041116
Std. Dev.   0.007912
Skewness   0.093422
Kurtosis   7.539827

Jarque-Bera  667.5198
Probability  0.000000

 

The excess returns display 
periods of turbulence and 
tranquility.  This suggests 
there is volatility 
clustering. 

The excess returns have an 
unconditional non-normal 
distribution: the 
distribution is leptokurtic 
(fat-tailed) – explain why. 

 
 
 



 
Now test for ARCH effects using an ARCH-LM test:
 
 
 

 

On the main toolbar click Quick/Estimate Equation and enter: 
 
ex_ret c   
 
 
 
On the Equation toolbar click View/Residual Tests/ARCH LM Test (Choose 5 lags) 
 
ARCH Test:

F-statistic 49.24828     Prob. F(5,765) 0
Obs*R-squared 187.7416     Prob. Chi-Square(5) 0
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 02/18/07   Time: 09:47
Sample (adjusted): 1/09/2003 1/19/2006
Included observations: 771 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 2.33E-05 5.81E-06 4.013972 0.0001
RESID^2(-1) 0.395564 0.035356 11.18795 0
RESID^2(-2) 0.019361 0.037755 0.512812 0.6082
RESID^2(-3) 0.147726 0.037373 3.952796 0.0001
RESID^2(-4) -0.148994 0.037682 -3.953982 0.0001
RESID^2(-5) 0.206817 0.035014 5.906722 0

R-squared 0.243504     Mean dependent var 6.19E-05
Adjusted R-squa 0.23856     S.D. dependent var 0.000159
S.E. of regressio 0.000139     Akaike info criterion -14.91586
Sum squared re 1.48E-05     Schwarz criterion -14.87969
Log likelihood 5756.064     F-statistic 49.24828
Durbin-Watson s 2.047884     Prob(F-statistic) 0  

Check whether or not 
inferences on ARCH effects 
are sensitive to the chosen 
lag: vary the lag from one 
day up to 20 days (1 month). 

We begin by assuming a 
constant risk premium and will 
relax this assumption later. 
 
 Alternatively, an ARMA 
model (identified using the 
ACF/PACF of ex_ret) could be 
used to estimate the conditional 
mean (see Seminar 4).   

 
The ARCH-LM statistic is significant at the 5% level suggesting the presence of ARCH 
effects.  This result provides justification for the next stage in the analysis which involves 
estimating the conditional variance using a GARCH(1,1) model. 
 
 
 
 
 
 



 
3. Estimate and test a GARCH(1,1) model for the conditional variance. 
 
i)  Estimate a GARCH(1,1) model 

 

On the main toolbar click Quick/Estimate Equation (Method=ARCH) 
 
In the Mean equation enter 
 
ex_ret c  
 
The default settings for the conditional variance equation are GARCH(1,1) with a 
conditional normal distribution (Variance and distribution specification).  Proceed 
using these settings: 
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 10:12
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 13 iterations
Variance backcast: ON
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Coefficient Std. Error z-Statistic Prob.  

C 0.000539 0.000228 2.361327 0.0182

Variance Equation

C 7.72E-07 3.01E-07 2.565099 0.0103
RESID(-1)^2 0.057111 0.013868 4.118149 0
GARCH(-1) 0.923931 0.016902 54.66489 0

R-squared -0.00001     Mean dependent va 0.000514
Adjusted R-squ -0.003896     S.D. dependent var 0.007912
S.E. of regressio 0.007927     Akaike info criterion -7.155111
Sum squared re 0.048516     Schwarz criterion -7.13112
Log likelihood 2780.183     Durbin-Watson stat 2.136473

Name the equation 
‘GARCH11’ for 
later reference 

 
The ARCH and GARCH coefficients (0.057 and 0.924) are statistically significant.  The 
sum of these coefficients is 0.981 which indicates that shocks to volatility have a 
persistent effect on the conditional variance.  These shocks will have a permanent effect 
if the sum of the ARCH and GARCH coefficients equals unity (⇒the conditional 
variance does not converge on a constant unconditional variance in the long run).  In that 
case the model is an Integrated GARCH(1,1) –  IGARCH(1,1) – see lecture 6 notes. 



 
  
 
 
 
 
 

 
 
ii)  Misspecification testing of the GARCH(1,1) model 

Test for an IGARCH model ( )1=+ βα   
 
Click View/Coefficient Tests/Wald - Coefficient Restrictions… 
 
c(3)+c(4)=1 

IGARCH is 
rejected.  Shocks to 
volatility are just 
very persistent if not 
permanent. 

 
These tests are based on the (estimated) standardized residuals: 
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If the assumption v is valid then: ( )1,0~ NID
   

a) The standardized residuals should be normally distributed. 
 

On the Equation toolbar click View/Residual Tests/Histogram-Normality Tests 
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Series: Standardized Residuals
Sample 1/02/2003 1/19/2006
Observations 776

Mean      -0.017035
Median   0.025920
Maximum  3.259749
Minimum -4.312416
Std. Dev.   1.002023
Skewness  -0.340787
Kurtosis   3.765885

Jarque-Bera  33.98632
Probability  0.000000

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In fact, the standardized residuals in this case are non-normally distributed.  However, to 
estimate the model using Maximum Likelihood (ML), we have assumed a conditional 
normal distribution: 

( ) ( )2,0~1,0~ NNIDv σε Ω⇒ 1 tttt −  
Assuming conditional normality the likelihood function is given by: 
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If the conditional distribution is non-normal then assuming normality will still result in 
ML estimators which are: 

• Consistent 
• Asymptotically normal 

 
However the standard errors will be inconsistent.  If the conditional normality assumption 
is rejected then as an alternative either: 
 

• Re-estimate the model using robust standard errors (click the options tab at the 
equation estimation stage and select Bollerslev-Wooldridge Heteroscedasticity 
Consistent Covariance Matrix). This is known as Quasi Maximum Likelihood 
(QML).  This estimator is consistent but not asymptotically efficient (efficient 
estimator=estimator with the lowest variance).  

OR 
• Re-estimate the model using a different conditional error distribution (at the 

equation estimation stage change the ‘error distribution’ from normal to a 
Student’s t or a Generalized Error Distribution).  Assuming the correct 
distribution has been selected, then the estimator will be consistent and 
asymptotically efficient (i.e., it is Exact Maximum Likelihood). 

 
We will re-estimate the model with robust standard errors (QML).  This is a ‘safe’ option: 
we are assured of valid (if not efficient) inferences.  However, if we use Exact ML, but 
the alternative distributional assumptions are incorrect, then the inferences will remain 
invalid. 
 

 

Click Estimate on the equation toolbar 
Click on the options tab and check the Coefficient covariance to select a Bollerslev-
Wooldridge covariance matrix  
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 11:13
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 13 iterations
Bollerslev-Wooldrige robust standard errors & covariance
Variance backcast: ON
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Coefficient Std. Error z-Statistic Prob.  

C 0.000539 0.000216 2.489807 0.0128

Variance Equation

C 7.72E-07 3.16E-07 2.44352 0.0145
RESID(-1)^2 0.057111 0.020328 2.809516 0.005
GARCH(-1) 0.923931 0.022426 41.1987 0

R-squared -0.00001     Mean dependent va 0.000514
Adjusted R-squ -0.003896     S.D. dependent var 0.007912
S.E. of regressio 0.007927     Akaike info criterion -7.155111
Sum squared re 0.048516     Schwarz criterion -7.13112
Log likelihood 2780.183     Durbin-Watson stat 2.136473

Now that we have re-specified the model to take 
account of conditional-normality, compare 
inferences between the original GARCH model 
and the ‘robust’ model.  The standard errors and 
p-values are different.  This could make a crucial 
difference to the inferences (although it doesn’t in 
this case).   



There are other misspecification tests that need to be carried out.  A second implication of 
the assumption is that: ( 1,0~ NIDvt )
   

b) The standardized residuals should be independent. 

 

On the equation toolbar click View/Actual, Fitted, Residual/Standardized Residual 
Graph 
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Inspect this plot of the 
standardized residuals.  Do these 
residuals look independent? 

 
To help you reach a firmer conclusion you can conduct more formal tests of 
independence…. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the equation toolbar click View/Residual Tests/Correlogram Q Statistics 
 
AutocorrelaPartial Correlation AC  PAC  Q-Stat  Prob

       .|.      |        .|.      | 1 -0.056 -0.056 2.4825 0.115
       .|.      |        .|.      | 2 0.058 0.055 5.1367 0.077
       .|.      |        .|.      | 3 -0.016 -0.01 5.3357 0.149
       .|.      |        .|.      | 4 0.022 0.018 5.7153 0.221
       .|.      |        .|.      | 5 -0.012 -0.009 5.8326 0.323
       .|.      |        .|.      | 6 -0.005 -0.008 5.8518 0.44
       .|.      |        .|.      | 7 -0.039 -0.039 7.0722 0.421
       .|.      |        .|.      | 8 0.021 0.017 7.4213 0.492
       .|.      |        .|.      | 9 -0.031 -0.024 8.1568 0.518
       .|.      |        .|.      | 10 -0.019 -0.025 8.4538 0.585  

This is the ACF/PACF 
for the standardized 
residuals.  In this case, 
the Q tests suggest 
these residuals are 
linearly independent 
(be sure you 
understand why). 

 
and… 
 
 



 

On the equation toolbar click View/Residual Tests/Correlogram Squared Residuals 
 
AutocorrelaPartial Correlation AC  PAC  Q-Stat  Prob

       .|.      |        .|.      | 1 0.024 0.024 0.4393 0.507
       .|.      |        .|.      | 2 0.004 0.003 0.4501 0.798
       .|.      |        .|.      | 3 0.003 0.003 0.4562 0.928
       .|.      |        .|.      | 4 -0.024 -0.024 0.9092 0.923
       .|*      |        .|*      | 5 0.068 0.069 4.4892 0.481
       .|.      |        .|.      | 6 0.011 0.008 4.5798 0.599
       .|.      |        .|.      | 7 0.057 0.057 7.1358 0.415
       .|.      |        .|.      | 8 0.032 0.028 7.9457 0.439
       .|.      |        .|.      | 9 -0.024 -0.022 8.3945 0.495
       .|.      |        .|.      | 10 -0.023 -0.027 8.8138 0.55  

This is the ACF/PACF 
for the standardized 
residuals squared.  
Here the Q test 
suggests the 
standardized residuals 
are also non-linearly 
independent. 

These correlograms and Q statistics support the hypothesis that the standardized residuals 
are independent. These tests therefore suggest that the GARCH(1,1) model (with robust 
Bollerslev-Wooldridge standard errors) is well specified: so far so good. 
 
However, the GARCH model assumes a symmetric response of volatility to past shocks.  
In the context of stock market returns, there is the possibility of leverage effects.  In that 
case a negative shock (reducing the stock market value of the business) will raise the 
debt-equity ratio so that the firm will appear more risky to investors.  As a consequence 
negative shocks will raise volatility more than a positive shock of equal magnitude.  This 
leads to the possibility of asymmetries in volatility… 
   
4. Testing for asymmetries in volatility (see Brooks Chp 8.16) 
 
To test whether (past) positive and negative shocks have a different impact on volatility a 
Sign Bias (SB) Test can be carried out: 
 
Step 1: Obtain the residuals from the (symmetric) GARCH model. 
 
Step 2: Test for sign bias in the following regression of the squared residuals: 
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The test for sign bias involves a t-test on the coefficient 1α : if positive and negative 
shocks have different impacts on volatility then 1α will be statistically significant. 
 
 
 



A more general test involves testing whether volatility depends on both the sign and size 
of past shocks.  This is a Sign and Size Bias Test.  This test is based on the following 
regression: 
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The null hypothesis of no sign and size bias corresponds to: α =α αH

)3(~ 22 χ
a

.  This 
can be tested with a Lagrange Multiplier (LM) test.  Under the null hypothesis: 

 TR . 
 
We’ll carry out the Sign and Size Bias test.  Firstly obtain the residuals from the GARCH 
model: 

 

On the equation toolbar click Procs/Make Residual Series.  Name the residuals 
‘resid_garch’ 

Then create the dummy variable for negative shocks: 
 

On the workfile toolbar click Genr and enter: 
 
s=resid_garch<0 

 
  
 
 

 
Now run the sign and size bias test regression: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the main toolbar click Quick/Estimate Equation (Method=Least Squares): 
 
resid_garch^2 c s(-1) s(-1)*resid_garch(-1) (1-s(-1))*resid_garch(-1) 
 
Dependent Variable: RESID_GARCH^2
Method: Least Squares
Date: 02/18/07   Time: 15:19
Sample (adjusted): 1/03/2003 1/19/2006
Included observations: 775 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.50E-05 1.06E-05 1.410174 0.1589
S(-1) -2.18E-06 1.55E-05 -0.140744 0.8881
S(-1)*RESID_GARCH(-1) -0.008954 0.001395 -6.419375 0
(1-S(-1))*RESID_GARCH(-1) 0.008134 0.001373 5.925781 0

R-squared 0.09038     Mean dependent va 6.18E-05
Adjusted R-squared 0.086841     S.D. dependent var 0.000159
S.E. of regression 0.000152     Akaike info criterion -14.74159
Sum squared resid 1.78E-05     Schwarz criterion -14.71757
Log likelihood 5716.365     F-statistic 25.53555
Durbin-Watson stat 1.720522     Prob(F-statistic) 0

 

Name this 
equation 
sb test



 
Now calculate the LM test and p-value.   

 
 
 
 
 
 
 

Double click on the 
scalar objects and look at 
the bottom of the Eviews 
window to see their 
values. 

In the command window type in: 
 
scalar lm=sb_test.@regobs*sb_test.@r2 
scalar lm_pval=1-@cchisq(lm,3) 

 
The p-value for the test indicates that the null of no sign and size bias is strongly rejected.  
We will therefore estimate the TARCH and EGARCH models which allow for an 
asymmetric response of volatility to past shocks.  Firstly estimate the TARCH model 
 

 

Open the equation ‘GARCH11’.  Click on the Estimate button; change the Threshold 
order to 1 and click OK 
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 15:41
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 16 iterations
Bollerslev-Wooldrige robust standard errors & covariance
Variance backcast: ON
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0)
        + C(5)*GARCH(-1)

Coefficient Std. Error z-Statistic Prob.  

C 0.000329 0.000214 1.537198 0.1242

Variance Equation

C 9.69E-07 3.49E-07 2.77939 0.0054
RESID(-1)^2 -0.005338 0.019971 -0.267307 0.7892
RESID(-1)^2*(RESID(-1)<0) 0.116697 0.037636 3.100672 0.0019
GARCH(-1) 0.923517 0.019471 47.43031 0

R-squared -0.000545     Mean dependent var 0.000514
Adjusted R-squared -0.005736     S.D. dependent var 0.007912
S.E. of regression 0.007935     Akaike info criterion -7.175475
Sum squared resid 0.048542    Schwarz criterion -7.145487
Log likelihood 2789.084     Durbin-Watson stat 2.13533

Freeze this view of the 
equation and name the 
resulting table object: 
TARCH11 

This is a TARCH(1,1) model.  The 
coefficient on the asymmetry term is positive 
and statistically significant.  This supports 
the presence of leverage effects.  

 
 
 
 
 
 



 
Now estimate the EGARCH model 

 

Open GARCH11 and click the Estimate button.  Change the Model to EGARCH and 
click OK 
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 15:51
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 12 iterations
Bollerslev-Wooldrige robust standard errors & covariance
Variance backcast: ON
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1))

Coefficient Std. Error z-Statistic Prob.  

C 0.000378 0.000212 1.777906 0.0754

Variance Equation

C(2) -0.120229 0.044075 -2.727828 0.0064
C(3) 0.04865 0.022572 2.155312 0.0311
C(4) -0.082004 0.021597 -3.796969 0.0001
C(5) 0.992026 0.003482 284.8753 0

R-squared -0.000297     Mean dependent var 0.000514
Adjusted R -0.005487     S.D. dependent var 0.007912
S.E. of regr 0.007934     Akaike info criterion -7.17731
Sum squar 0.04853     Schwarz criterion -7.147322
Log likeliho 2789.796     Durbin-Watson stat 2.135859

Name this 
equation 
EGARCH11 

The coefficient on the 
asymmetry term, C(4), is 
negative and statistically 
significant.  Again this 
supports the presence of 
leverage effects. 

Which asymmetric model is preferred: TARCH or EGARCH?  The Schwarz criterion is 
marginally smaller for the EGARCH model (which suggests EGARCH is the better 
model) - but there’s so little to choose between the two models that we will use both in 
the final piece of analysis.   
 
5. GARCH-in-Mean (GARCH-M) 
 
Applying CAPM to the market portfolio implies the following model for the excess 
market returns: 
 
 ttftm rr ελσ +=− 2

,
 
whereλ is the market price of risk (see Lectures 2, 6 and Cuthbertson and Nitzsche pp 
137-138 and pp 659-661).  The conditional variance enters the mean equation directly 
implying a time-varying risk premium.  This is known generally as a GARCH-M model.  
Specifically we will estimate EGARCH-M and TARCH-M models building on the 
analysis of asymmetric volatility in section 3. 



 
 
 
Begin by estimating an EGARCH-M model:  
 
 
 
 
 

 

Open the equation EGARCH11 and click on the Estimate button. Click on ARCH-M 
and select Variance.  Then click OK: 
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 16:08
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 16 iterations
Bollerslev-Wooldrige robust standard errors & covariance
Variance backcast: ON
LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(5)*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

Coefficient Std. Error z-Statistic Prob.  

8.155953 1.603676 0.1088GARCH 13.0795
C -0.00012 0.000377 -0.316964 0.7513

Variance Equation

C(3) -0.197456 0.071347 -2.76754 0.0056
C(4) 0.048463 0.022392 2.164259 0.0304
C(5) -0.084591 0.020434 -4.139628 0
C(6) 0.984433 0.006543 150.4486 0

R-squared 0.001353     Mean dependent var 0.000514
Adjusted 

The EGARCH-M term is 
statistically insignificant 
suggesting there is no 
risk/return trade-off ⇒ 
CAPM is rejected. 

R -0.005132     S.D. dependent var 0.007912
S.E. of regr 0.007932     Akaike info criterion -7.178554
Sum squar 0.04845    Schwarz criterion -7.142568
Log likeliho 2791.279     F-statistic 0.208671
Durbin-Wa 2.111499     Prob(F-statistic) 0.958882

 
 
 
 
 
 
 
 
 
 



 
Finish the analysis by estimating a TARCH-M model. 

Click the Estimate button on the equation toolbar.  Change the Model to TARCH and 
click OK 
 
Dependent Variable: EX_RET
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 02/18/07   Time: 16:20
Sample (adjusted): 1/02/2003 1/19/2006
Included observations: 776 after adjustments
Convergence achieved after 21 iterations
Bollerslev-Wooldrige robust standard errors & covariance
Variance backcast: ON
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-1)^2*(RESID(-1)<0)
        + C(6)*GARCH(-1)

Coefficient Std. Error z-Statistic Prob.  

GARCH 17.70176 6.307223 2.806586 0.005
C -0.000327 0.000303 -1.079676 0.2803

Variance Equation

C 1.49E-06 8.66E-07 1.719052 0.0856
RESID(-1)^2 -0.023541 0.019372 -1.215222 0.2243
RESID(-1)^2*(RESID(-1)<0) 0.129743 0.033818 3.836509 0.0001
GARCH(-1) 0.918231 0.017719 51.82098 0

R-squared 0.009728     Mean dependent var 0.000514
Adjusted R-squared 0.003298     S.D. dependent var 0.007912
S.E. of regression 0.007899     Akaike info criterion -7.179563
Sum squared resid 0.048044    Schwarz criterion -7.143577
Log likelihood 2791.67     F-statistic 1.512863
Durbin-Watson stat 2.104188     Prob(F-statistic) 0.183346

 

The intercept is statistically 
insignificant and the TARCH-M 
coefficient is positive and statistically 
significant.  This supports the CAPM 
model ⇒ no abnormal returns and a 
positive risk/return trade-off.

Compare the Schwarz criteria for 
the EGARCH-M and TARCH-M 
models – this one is smaller.  This 
supports the use of the TARCH-M 
specification to test CAPM. 

If you were doing a similar analysis for a dissertation then, before reporting the final 
results from the TARCH-M model, it would be wise to repeat the misspecification 
tests (as carried out in section 3).  The first (and only) ‘law’ of econometrics is: TEST, 
TEST, TEST. Carry out these tests in your own time to develop your understanding of 
misspecification testing in the context of GARCH models.   

Conclusion 
 
GARCH models provide a rich approach to modelling time varying volatility.  There are 
numerous variants on the ‘plain vanilla’ GARCH model; those presented in this seminar 
handout are examples of the most popular models.   Building on a simple GARCH 
model, we were able to incorporate leverage effects through the use of asymmetric 
GARCH models (TARCH/EGARCH).  Extending this further to a TARCH-
M/EGARCH-M framework allowed us to test the predictions of CAPM for the market 
returns. These predictions (no abnormal returns and a positive risk/return trade-off) were 
not rejected in the TARCH-M model.  


