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Today

Multivariate analysis with nonstationary variables
1. Spurious regressions
2. Cointegration
3. Analyzing long-run relationships in empirical 

finance
Seminar 7: Cointegration analysis of long-run 
PPP.

(Brooks Chps 7.4-7.8; Verbeek Chp 9)
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Spurious regressions
The problem: Independent non-stationary processes can 

appear to be related:
For example suppose…

…then a regression of Y on X…

…will typically display: 
– A high R-sq (even though it should be zero).
– A significant t-stat for β (even though it should be insignificant).

Clearly this can be very misleading in empirical work.  
However the regression also contains a clue that there is a 
problem with the equation: 
– The error term is highly autocorrelated (in fact it’s I(1) – see below).
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Spurious regression: sampling distributions of the 
t-stat and R-sq from a simulation with 100,000 samples of 
independent random walks with T=10,000
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Series: T_SPUR
Sample 1 100000
Observations 100000

Mean       0.023541
Median   0.088570
Maximum  448.0761
Minimum -480.9837
Std. Dev.   74.15763
Skewness  -0.033843
Kurtosis   3.963160

Jarque-Bera  3884.412
Probability  0.000000
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Series: RSQ_SPUR
Sample 1 100000
Observations 100000

Mean       0.241821
Median   0.172911
Maximum  0.958967
Minimum  1.78e-12
Std. Dev.   0.226885
Skewness   0.843509
Kurtosis   2.674488

Jarque-Bera  12299.95
Probability  0.000000

If we run regressions with independent series
then we’d expect the absolute value of
the t-stat for β to be >1.96 only 5% of the time
in repeated samples (based on a normal dist.).

However in this case the distribution of t is highly
non-normal: in fact 97.6% of the t-values are 
greater than 1.96 in absolute value!  The t-ratios 
in these regression tend to indicate that there is a
significant relationship even though there is none.

We’d expect the R-sq to be close to 0
since the series are independent.

However here we find that: 
•R-sq>0.5 in 16.4% of the samples.
•R-sq>0.9 in 0.1% of the samples!
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Spurious regression: simulation results continued 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

        |********         |****** 1 0.998 0.998 9867.4 0
        |********         |       2 0.996 0.01 19700 0
        |********         |       3 0.995 -0.003 29498 0
        |********         |       4 0.993 0.007 39261 0
        |********         |       5 0.991 0.006 48991 0
        |********         |       6 0.989 -0.011 58686 0
        |********         |       7 0.987 0.001 68347 0
        |********         |       8 0.986 0.008 77975 0
        |********         |       9 0.984 -0.02 87568 0
        |********         |       10 0.982 0.015 97127 0
        |********         |       11 0.98 0.013 106654 0
        |********         |       12 0.979 -0.013 116147 0
        |********         |       13 0.977 0 125607 0
        |*******|         |       14 0.975 -0.008 135033 0
        |*******|         |       15 0.973 0.006 144426 0
        |*******|         |       16 0.971 -0.008 153786 0
        |*******|         |       17 0.97 0.005 163112 0
        |*******|         |       18 0.968 0.01 172405 0
        |*******|         |       19 0.966 0.003 181667 0
        |*******|         |       20 0.964 -0.002 190896 0
        |*******|         |       21 0.963 0.004 200094 0
        |*******|         |       22 0.961 0.011 209261 0
        |*******|         |       23 0.959 -0.019 218396 0
        |*******|         |       24 0.958 0.012 227500 0

Sample ACF of residuals 

The residuals are highly autocorrelated.
In fact they look non-stationary! 

This is a major clue that the relationship
between Y and X is spurious.

It indicates that Y and X do not move
together in the long-run.
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Spurious regression: the cause
The OLS estimator is:

If Y and X are stationary and cov(X,ε)=0 (X is exogenous) then 
the OLS estimator is consistent:

However with Y and X~I(1) and β=0 then ε~I(1).  In that case 
the OLS estimator is inconsistent – it does not converge on 
β=0 ⇒Y and X appear to be related (even as T→∞).

The reason is that the stochastic trends in X and ε (both are 
I(1)) causes the sample covariance between X and ε to 
diverge (in probability) ⇒ it does not tend to cov(X,ε)=0. 
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Cointegration
In general linear combinations of I(1) variables form spurious 

relationships:

We get the case just analyzed when:

Therefore, in OLS estimation with I(1) variables, typically: 
1. Point estimators are inconsistent because the error term/z is I(1)
2. The t-stats follow non –normal distributions (see slide 4).

An important exception to 1. is where there are values of the 
β’s such that z~I(0):
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z is a linear combination of I(1) variables which is I(0).
This combination of the variables is called a: 

COINTEGRATING RELATIONSHIP
In this case z is CI(1,1) (‘cointegrated of order one-one’) 
In general if z is a linear combination of I(d) variables 
which is I(d-b) (b>0) then z is CI(d,b).

The relationship is spurious
because there is no tendency 
for the series to move together
in the long-run (z is I(1)).
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Cointegration

The intuition behind cointegration is that the I(1) variables 
share the same fundamentals/long-run components: 
⇒The variables share a common stochastic trend

Individually the variables vary widely in the long-run:
⇒Their variance is infinite.
⇒Their spectra are infinite at frequency zero (⇒∞ long-run variation).

But in combination the variables  move together in the long-
run: 
⇒The variance of the combination is finite.
⇒The spectrum of the combination at frequency zero is finite.

In effect the dominant long-run components of the individual 
variables ‘cancel out’ in the cointegrating relationship.



9Warwick Business School

Cointegration

Cointegration is a very important concept in empirical 
finance because it means that variables which: 
• Have no equilibrium tendency individually (because they are I(1))
• Are nonetheless bound together in equilibrium as a group

(because a linear combination of the variables is I(0))

Cointegration analysis is therefore very important in 
analyzing the long-run/equilibrium properties of a system 
of non-stationary variables.

Clive Granger shared the Nobel Prize in Economics in 2003 
(with Robert Engle who got it for ARCH):

“for methods of analyzing economic time series with common 
trends (cointegration)”.
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Cointegration: properties of OLS estimator
The cointegrating relationship can be written as a linear regression 

equation:

The fact that ε~I(0) makes a big difference to the OLS estimator compared 
to the spurious regressions analysis:
– Not only are the OLS estimators consistent they are SUPER-CONSISTENT.
– This means the estimator converges on the population coefficients much 

faster than in the stationary case.
Why? OLS chooses parameter values which minimize the residual variance:  

– Only the cointegrating relationship will have a finite variance: ε~I(0).
– All other linear combinations are associated with an infinite residual 

variance: ε~I(1).
Therefore OLS is very efficient at finding the cointegrating relationships (if 

they exist) from amongst all the other (non-stationary) linear 
combinations.

ttnntt XbXbbY ε++++= ,,221 K

Here we’ve just normalized the cointegrating
relationship on one of the variables (X1) which 
we’ve then made the dependent variable (Y). 

The error term is the same as z in the previous
formulation. Cointegration implies that the 
error term in a regression with I(1) variables is I(0).
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Simulation evidence on the properties of the OLS estimator: 
sampling distributions of the OLS estimator from a regression of Y 
on X in two instances
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Series: SLOPES_NS
Sample 1 100000
Observations 100000

Mean       0.499999
Median   0.499999
Maximum  0.502237
Minimum  0.496996
Std. Dev.   0.000332
Skewness  -0.017694
Kurtosis   4.905678

Jarque-Bera  15136.92
Probability  0.000000
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Sample 1 100000
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Mean       0.499972
Median   0.500006
Maximum  0.542554
Minimum  0.457939
Std. Dev.   0.010025
Skewness  -0.002035
Kurtosis   2.982246

Jarque-Bera  1.382321
Probability  0.500994

Y is a simulated series with the following
DGP:

100,000 samples of Y and X were 
obtained (X is either a random walk or an 
I(0) process – see below).  The model was 
estimated by OLS 100,000 times to estimate 
the sampling distribution of     . 

The simulation was conducted in two 
instances:

1. Y,X and ε are I(0) (a classical stationary
model).

2. Y and X are I(1); ε is I(0) (a cointegrating
model).

β̂

Stationary  model

Cointegrating model
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The simulation evidence highlights…

Both the sampling distributions are centred very close to 0.5 (the true 
parameter value).  Recall, the sample size is large: T=10,000. 

However the mean is closer to 0.5 in the cointegrating model.
– The relative error is 0.0056% in the stationary model versus 0.0002% in the 

cointegrating model.
Also the estimates are less dispersed about the mean in the 
cointegrating model:

– The std dev is 0.01 in the stationary model versus 0.0003 in the
cointegrating model.

– The range (max value-min value) is  0.085 in the stationary model versus  
0.005 in the cointegrating model.

This highlights that the OLS estimator is collapsing on the true value faster for 
the cointegrating model than the stationary model ⇒ OLS is SUPER-
CONSISTENT.
– In fact the sampling distribution is collapsing on β at the rate T for the 

cointegrating model versus √T for the stationary model.
However the sampling distribution in the cointegrating model is highly non-

normal (unlike the distribution in the stationary model which is normal).
This highlights again that classical inferences do not apply with non-

stationary models (see also the DF distribution in lecture 7).
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Examples of cointegration in empirical finance

Relationship between spot and future prices
Spot (s) and forward (f) prices are I(1).
However for a given asset we would expect s and f to 

be driven by the same fundamentals (share a 
common stochastic trend).

In that case there should exist a cointegrating
relationship between f and s

For example in FX markets CIP ⇒ and 
UIP⇒ (see lecture 4).  Therefore if CIP and 
UIP hold then
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The cointegrating vector is (1 -1)
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Examples of cointegration in empirical finance
The Expectations Hypothesis (EH) of the term structure 

(Brooks 7.12; Cuthbertson & Nitzsche 20.2 and 22.1)
The EH says that the expected one period holding yield on 

bonds of different maturities m should be equalized:

If the yields are I(1) (and empirically they are) then the EH 
implies that the spreads are I(0).

The implication is that the yields of different maturities are 
being driven by the same fundamentals (Rt+Τ): the yields 
share a common stochastic trend. 
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Second line follows assuming EH and 
rational expectations:        is a martingale
difference error term.

( )m
tε

Τ≡Term premium (constant over time
and independent of m).
R≡Known return on 1 period bond.

The yields at different maturities 
are cointegrated.  The cointegrating
vector is (1 -1). 
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Examples of cointegration in empirical finance
Purchasing Power Parity (PPP) (see Seminars 6-8)

Adding a shock to the equilibrium at time t gives a 
stochastic equation 

For cointegration the equilibrium error must be stationary.
Conversely if ε~I(1) then shocks to the equilibrium will 

have a permanent effect
– No tendency for the system to revert back to equilibrium.
– No long-run PPP (spurious relationship).

.
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The log real exchange rate=0
in equilibrium (or a non-zero 
constant if the price indices are 
based In different years)

Equilibrium error:

The cointegrating vector is:
(1 -1 1)
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lnS, lnP and lnP* are I(1) variables: see Seminar 6
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Dynamic equations: short run dynamics versus long 
run equilibrium

The cointegrating relationship is a static equation which 
relates only to the long run equilibrium. 

We need to look at a dynamic model to gain information 
about the short-run and other dynamics in the system:

In equilibrium:      
So the dynamic model has the following long-run form 
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There exists a stable long run relationship 
if φ<1. If φ=1 then y|x has a unit root. In 
that case there is no cointegrating
relationship between Y and X.
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Autoregressive distributed lag (ADL) model
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Dynamic equations: impact, interim and long-run 
multipliers
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The immediate impact of  a unit change in X on Y:
Impact multiplier

The impact after one period:
Interim multiplier (after 1-period)
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The impact after two periods:
Interim multiplier (after 2-periods)

The long-run (or equilibrium) multiplier is the 
cumulative impact of a unit change in X on Y The impact after n periods:

Interim multiplier (after n-periods)

Same result as before
(see the previous slide).
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Error Correction Model (ECM)
The ECM is a popular representation of the ADL model 

which incorporates both long-run equilibrium and short 
run dynamics in the system.  
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The Error Correction Term (ECT) 
This is the equilibrium error in the 
previous period:

The speed of adjustment to 
dis-equilibrium is measured  
by

Short run dynamics

From ADL to ECM
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Comments on ECM
1. The ECM incorporates both long-run and short-run effects 

assuming φ<1 (i.e., assuming cointegration).
2. If φ=1 (no cointegration) then only the differenced 

variables appear in the model (corresponding to short run 
effects).

3. If there is cointegration φ−1<0 parameterizes the speed of 
adjustment of Y to dis-equilibrium in the previous period.
– If Y is above the long-run equilibrium in the previous period                   

then Y will fall in the following period (and vice-versa)
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For example, if φ−1=−0.5 then 50% of the
dis-equilibrium in period t-1 is corrected in
period t. A further (φ−1) φ (=25%) of this 
dis-equilibrium is corrected in period t+1…
…a further (φ−1) φn is corrected in period t+n. 

The cumulative sum of the adjustments
(φ−1)+(φ−1)φ+(φ−1)φ2 …

is -1 ⇒100% adjustment back to equilibrium
(in the long-run). 
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Comments on ECM

4. All the variables in the ECM are stationary
– If Y and X are I(1) then ΔY are ΔX are I(0)
– If Y and X are cointegrated then ε~I(0)
– If Y and X are not cointegrated then only the differenced 

(stationary) variables appear in the model (it’s no longer an 
ECM but a differenced model of Y).

Since all the variables are stationary, the ECM can be 
estimated by OLS with classical t and F tests being 
valid for inferences.
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Granger Representation Theorem

This is a fundamental theorem in cointegration analysis.  It 
states that:
– If there exists a linear combination z of I(1) variables such that 

z~CI(1,1) then there must exist an ECM for the data. 
– If there exists an ECM for a group of I(1) variables then they 

must be cointegrated CI(1,1).

In other words, cointegration is both a necessary and 
sufficient condition for the existence of an ECM amongst 
I(1) variables: 

ECM for I(1) variables exists ⇔ z~CI(1,1) 
Given the ubiquity of ECMs in applied work the theorem 

has important empirical implications.
Notably, we need to test for cointegration before we can 

validly estimate an ECM for variables which are I(1) in 
levels. 
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Estimating Cointegrated Systems
Engle and Granger Two Step Estimator
EG 2 step estimator embodies the principle of the GRT: 

– Firstly test for cointegration (estimate the long-run); 
– Then, if there is cointegration, estimate the short-run dynamics in 

the ECM.

Step 1 (Estimate the long-run parameters)
a) Test the variables individually for unit roots (see seminar 7)
b) Estimate the cointegrating regression using OLS e.g.,

c) Test the residuals for unit roots using an ADF test
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No trend or intercept is required in this ADF 
test equation.

The alternative is that ε is stationary 
around a zero mean (the residuals have 
a zero mean by construction if the long-run
equation includes a constant)
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Engle and Granger Two Step Estimator
Step 2 (Estimate the short run dynamics)
If ε~I(0) then we can estimate an ECM using OLS e.g.,

∑ ∑
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0 1
1ε̂αγδα

Only include ΔXt in the model if X is 
‘weakly exogenous for the short run parameters’
⇒ cov(ΔXt ,vt )=0

Sometimes a model with just lagged values of 
ΔX (the ‘reduced form’) is estimated due to 
endogeneity issues.

Lagged long-run residuals from 
Step 1.

α<0 is the speed of adjustment
to dis-equilibrium in the previous
period.

The short-run dynamics are obtained from
these parameters

Include an intercept in the ECM
if there are trends in the data
(analogous to including a drift term
in a random walk).
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Comments on EG 2 step

The OLS estimators of the long-run parameters are super-
consistent (see slide 11).

However do not use t and F tests for inferences – they are 
invalid for inferences due to the nonstationarity of the 
variables.

Also standard DF critical values are invalid for the 
cointegration test
– The test involves estimated residuals rather than raw data.

OLS (which minimizes the residual variance) will tend to 
make these residuals appear stationary even if there is 
no cointegration. 
– Standard DF critical values will tend to reject the null (no 

cointegration) too often.
– Use alternative critical values which take this issue into account 

(see Seminar 7).  
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Conclusions

Distinguishing between spurious regressions and 
cointegrating relationships is crucial in multivariate 
analyses involving nonstationary variables.

Only in the presence of cointegration is there a meaningful 
relationship between the variables.

Therefore cointegration analysis (testing for long-run 
relationships, estimating ECMs…) forms a fundamental 
(and commonplace) part of modern time-series 
econometrics.
In this context the EG 2 Step estimator has intuitive 
appeal and is easily implemented (see Seminar 7). 
However there are major drawbacks with this approach 
which we will address in the final lecture.  
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