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Introduction

Univariate time series modeling for stationary
stochastc processes (Brooks Chp 5)

1. Different types of time series model:
AR, MA and ARMA models.

2. The ACFs and PACFs of different types of time
series models.

3. Time series model selection using ACFs and
PACFs.

4. Time series model selection using information
criteria.




Introduction

ARMA models provide predictions of a time series using
past values of the series and/or innovations (error
terms).

ARMA models are usually atheoretical/purely statistical
models (not normally based on economic/finance
theory).

The principle use of ARMA models is for forecasting a series
(not policy).

ARMA models often provide better out of sample forecasts
than structural (i.e., theory motivated) models:

—Seminar 4: Forecast comparisons of GMM CIP
(structural) model versus an ARMA model for the
forward premium.



White noise process

A white noise process is a basic ‘building block’ for time-
series models.

In essence, white noise is a process with no temporal
structure —it’s purely ‘random’ .

Properties of a (zero mean) white noise process:
E(s,)=0

var(g, )= o
cov(e,, &, )=0, k=0.

2

Is white noise a stationary
or non-stationary process?




Wold Decomposition Theorem

Any weakly stationary process can be decomposed into
the sum of a:

1. Purely deterministic component plus
2. A linear combination of white noise processes

Vi =T EFWE L TYE , T

:,LH‘ZW]Et—V vy =1.
j=0

If the number of weights is infinite we need to assume that
the weights 1 are absolutely summable for the series to
be convergent/stationary.

ZT:O‘WJ‘ <@

For example, if the weights decay geometrically to zero
then the series is convergent/stationary (see below).




Wold Decomposition Theorem

The Wold decomposition forms the basis for ARMA
modeling.

Different patterns of y weights give rise to different types
of ARMA model.

Also the ‘memory’ of a time-series process depends on the
Wold form of the model.

There is a one to one correspondence between the
pattern of the y weights in the Wold form of a series
and its autocorrelation function.

Without loss of generality we’ll assume the deterministic
component/mean =0 in the remainder of today’s
analysis.



Autoregressive (AR) processes

Suppose

Wj — ¢J
2
yt = gt +¢‘€t—l +¢ gt_z +...
— gt + ¢(gt_1 + ¢(C;t_2 + ...)
= ¢yt—l + gt
or (1— ¢L)y =& First-order AR process:
t t AR(1)
Where L is the ‘lag operator’: =Y = Y
m
- yt — yt—m
—M
B yt — yt+m




Sums of geometric series (useful results for later)

The sum to n terms of a geometric series is given by

S, =a+ar+ar’+..+ar"*

Therefore
S (I-r)=a+ar+ar’+..+ar""

—ar—ar’—..—ar"

:a(l—r”)
Accordingly

5. = a(l— r”)
1-r
If |r|<1 thenlim r" =0 The sum of an infinite geometric series is
therefore™ 2



Sums of geometric series: AR(1) model

The Wold form of an AR(1) model is an infinite geometric
series:

YV, =& +de_, +ds_,+...
=L+ f+ L%+ ),

The term in brackets is an infinite geometric series with

a=landr =gl
Therefore
y, = —
t 1—¢L
— (1_¢L)yt = &y




Stationarity conditions for AR models

Note that the Wold representation converges it
-1
Y, =(1—gL) 6 =6 +de +P°6, +..<o, |f <1

‘¢‘ <1 is the stationarity condition for an AR(1) process.
An AR(p) process is defined:

ALYy, =-L-gL"—..—g L")y, =&

An AR(p) process is stationary if all the roots of the
‘characteristic equation’

These roots ‘z’ can be
2 P AlL— |
1—¢1Z —¢22 —...—¢pZ =0 real or complex numbers

lie outside of the unit circle.




Stationarity conditions: examples

Yi = O-6Yt—1 T &
(1-0.6L)y, = ¢,

AR(1) process

The characteristic equation is:

1-0.6z2=0
—=2=1/0.6>1

So this AR(1) process is stationary. Equivalently:

¢ = 0.6 <1= Stationary AR(1) process

Note that a random walk/martingale is non-stationary -
it’s an AR(1) process with ¢ —1




Stationarity conditions: examples

Yi = 1'6yt—1 - O-6yt—2 T &
(1-1.6L+0.6L2)y, =¢,

AR(2) process

The characteristic equation is:
1-1.62+0.62°=0| — |z=1landz=1/0.6
(1-z)1-0.62)=0 /

This root means the
process is non-stationary

Note that the first difference of y is a stationary AR(1)

prOCGSSI (1— O6L)(1_ I—)yt — gt Example: Recall that differencing

— Ay — O6Ay Ty (log) prices (a non-stationary process)
t t-1 t results in a stationary series

A=1-L (log returns)




Autocorrelation function (ACF) for AR(1) model

The ACF describes the ‘memory’ of a stochastic process.
For a stationary process the ACF will decay to zero.
For a non-stationary process there is no decay.

Yi =& +¢5t—1 +¢2‘9t—2 T

2
Yiau=&at ¢5t_2 + ¢ E 3t

Yo = E(yf):az +¢° 0’ +¢'c° +.-.

1- ¢

7

Infinite geometric series with:

e a=c’andr = ¢’
1 :ﬁ:¢-

/ 7/0
Similarly
= p =9

ACF hasan infinitegeometricdecay

if | <1.

The ACFof a randomwalk/martingale
does not decay (¢ =1)




ACF of AR(1) processes | $=0.6 (Grey)
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Moving average (MA) processes
Going back to the Wold representation suppose

v, =0, v;=0, ]>1

—_ — First order MA process:
= Y, =¢& +0s_, = (1+ ¢9I_)gt I\;IA(1). P

An MA(Q) process is given by
y, =6(L)s, = (1+ oL +0,L° +...+Hqu)st

ALL finite order (g<w) MA(Q) models are stationary (the
Wold form is convergent).

However an important condition for MA models is

invertibility. An MA(qQ) process is invertible if all the roots
of

1+6,2+6,2° +..+60,2° =0

lie outside of the unit circle




Invertibility: example

Yi =&t 0'5‘9t—1

=(1+0.5L )¢,

The characteristic equation is:

1+0.52=0
—27=-1/05<-1

This MA(1) process is invertible. Invertibility means that the
process has a convergent infinite order autoregressive

representation

(1+0.5L) "y, = ¢

- /

The direct effect of past observations
| decreases over time = the AR form is

(1-0.5L+0.251° —0.1251° +., Jy, = ,| | comvergent

Infinite geometric series with

a=landr =-0.5L

For the MA(1) process invertibility
means: “9‘ <1




ACF for MA models

For an MA(1) process the memory cuts off after the first lag:

yt - 8,[ + egt_l ACF of MA(1) process (theta=0.5)
Yiq =&y 06, 045
04 -
2 2 __2 2 2
ot 0ot =0 |
0.3
2
7/1 f— 90' 2 0.25
02 1
0 0.15 |
P = o1
1‘|‘ 92 0.05 1
pk:O’k>1 071‘2‘3‘4‘5‘6‘7‘8‘9‘10
Lag

For an MA(q) process the memory cuts off (the auto-
correlations are zero) after lag q.

Again, this shows that all MA(q) (finite q) processes are
stationary.



Autoregressive-moving-average (ARMA) models

By combining AR and MA models we get ARMA models. For

example:
(L gLy, = L+ AL )e 250

This process is stationary and invertible if: ‘¢‘ <land ‘9‘ <1
More generally an ARMA(p,q) model is given by:

HL)=1-¢L—...—4,L’ HL)y=0L)z, O(L)=1+0L+...+6,L°

| >

An ARMA(p,q) is stationary and invertible if all the roots of
1-¢z-¢,2°—...—4,2° =0
and

1+6,2+6,2° +..+ 6,2 =0
lie outside of the unit circle.




Stationarity/invertibility conditions: example

y, =0.25y, , +& —0.7¢,_, —ARMAQ,1)
(1-0.25L)y, =(1-0.7L)s,
/ \
1-0.252=0 1-0.72=0
—72=1/0.25>1 —=2=1/0.7>1
i

|
The process is stationary

The process is invertible

Therefore this ARMA(1,1) process has convergent infinite

order MA and AR representations (due to its stationarity

and invertibility respectively).

Indeed, any stationary and invertible ARMA(p,q) process
will have convergent MA(«) and AR(«) representations.



ACF of stationary ARMA models
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Stationary ARMA
models have
convergent
MA()/Wold forms.

=ACF of stationary
ARMA models display
an infinite decay.

See Appendix 1 for
a derivation of the
autocorrelations of an
ARMA(T1,1) model.

Lag




In summary...

A stationary AR process has
* afinite order AR representation
e a convergent infinite order MA representation (Wold form)
—the ACF has an infinite decay

An invertible MA process has
e a convergent infinite order AR representation
* afinite order MA representation
—the ACF of an MA(q) process cuts off after lag g.

A stationary and invertible ARMA process has
* a convergent infinite order AR representation
e a convergent infinite order MA representation
—the ACF of an ARMA process has an infinite decay

The information in the Wold form/ACF is not sufficient to
distinguish between different AR and ARMA models.

We need to look at information contained in the AR form of
the model...




The Partial Autocorrelation Function (PACF)

The k™ partial autocorrelation is the coefficient ¢, in the AR
representation:

Yi = ¢klyt—1 T T ¢kk Yiek T &

The partial correlations measure the correlation between
Y, and Y, , net of the effects of Y, st Y1y

For an AR(p) model @ =0 for k>p. The PACF is zero for k>p.

However invertible MA(q) and ARMA(p,q) models have
convergent infinite order AR representations.

Therefore the PACF for an MA(q) or ARMA(p,q) model (but
not an AR(p) model) displays an infinite decay.

(Note that the ACF can be used to distinguish between MA(Q)
and ARMA(p,q) models.)




Table summarizing stylized shapes of ACF/PACFs for
AR, MA and ARMA models

Model ACF PACF

AR(1) Infinite geometric decay (or possible | Single spike at lag 1; O thereafter
damped sine-wave if roots of
characteristic equation are complex)

AR(p) Infinite geometric decay (or possible | Spikes at first p lags; O thereafter
damped sine-wave)
MA(1) Single spike at lag 1; O thereafter Infinite geometric decay (or
possible damped sine-wave)
MA(Q) Spikes at first g lags; O thereafter Infinite geometric decay (or

possible damped sine-wave)
ARMA(1,1) | Spike at lag 1 followed by an infinite | Spike at lag 1 followed by an
geometric decay (or possible damped | infinite geometric decay (or
sine-wave) possible damped sine-wave)
ARMA(p,q) | Spikes at first q lags followed by an Spikes at first p lags followed by
infinite geometric decay (or possible an infinite geometric decay (or
damped sine-wave) possible damped sine-wave)

See Appendix 2 for examples of ACFs/PACFs for simulated ARMA models




ARMA model selection: Box-Jenkins approach

1. Identification .
Use Q-statistics (see lecture 2) to test the
Use ACF and PACF to

identify a tentative significance of the correlations in the data at Step 1.

AR/MA/ARMA model Q(k) ~ X ; (k)

p—— If the model identified at Step 1 is adequate
it should ‘mop up’ all the dynamics in the
data = the residuals should be white noise.

A

Estimation of the
parameters of the model
identified at step 1.

Therefore use Q-stats again at Step 3 to

v _ check that the model’s residuals are white noise.
3. Diagnostic Checking The Q stats for the residuals have the following
Check distributions under the null of no autocorrelation:
i) the coefficients of the 9 5

del are significant - A
o aresonifcant. Q(k)~ #*(k—p-g)or y’(k-p-q-1)

model are white noise

Model without constant Model with constant

A 4

Is the model adequate?

If the null is rejected the investigator will need
to go back to Step 1 to identify a better model.

Yes No Model estimation (Step 2) can be carried out by
OLS for AR models or by Maximum Likelihood
_ for MA or ARMA models.




Using Information Criteria to aid model selection

For real financial data an AR/MA/ARMA model is only an approximation to
the true DGP.

Therefore real data will rarely display the stylized shapes associated with
true AR/MA/ARMA models.

This makes it quite hard (and very subjective) to select an AR/MA/ARMA
model for financial data based on looking at ACFs/PACFs.

Instead it’s popular nowadays to use information criteria to aid model
selection.

The objective is to choose a model which minimizes the value of the
information criterion. These criteria have two components:

1. A function of the residual sum of squares.
2. A penalty function which increases as extra AR/MA terms are added.

Adding in extra AR and/or MA terms to a model will
i) reduce the RSS (thereby reducing the information criterion).
i) increase the penalty function (increasing the information criterion).

Additional AR/MA terms will only reduce the information criterion if the fall
in the RSS more than outweighs the increase in the penalty function.




Examples of commonly used information criteria

Akaike Information Criterion Schwarz Criterion
A|C=|n(RSS/T)+2T—m sczln(RSS/T)+$|nT
‘ . _ S— Each criterion has a different
Hannan - Quinn Information Criterion penalty function (second term).
2m M= -
_ <t =p+q (+1, if the model has a
HQIC = In(RSS/T )+ = In(In(T)) SN

SC imposes the stiffest penalty for T>8 = |M, 1 _ 2M

: : = InT >2
SC therefore selects more parsimonious models

(fewer parameters) than either AIC or HQIC.

SC tends to be preferred because it estimates m
consistently.

=T >8




Conclusions

ARMA models are useful for forecasting time-series
data but not for formulating policy (need
structural models for this).

ldentifying ARMA models can be based on visual
inspection of ACFs and PACFs (Box-Jenkins
approach). However this can be very subjective.

Information criteria can provide a more objective
basis for choosing between different ARMA
models.




Reference

Brooks (2002), Introductory econometrics for
finance, CUP: Cambridge. Chapter 5



Appendix 1: ACF for ARMA(1,1) model (for your
information only: not examinable)

Write the ARMA(1,1) model
— ¢yt—1 TE T egt—l

With Wold form
y, =& +(¢+0)e, +(p+0)de_, +...

First obtain the variance. Multiply the ARMA form by Y,
and take expectations

Yo = E(ytz): ¢E(yt yt—1)+ E(ytgt)+ 6E(yt‘9t—1)
From the Wold form E(y,s,)=E(s?)=o? and

Eyig.)=(¢+OE ) =(p+60)0?

=gy, +0° +60(p+6)o?



ACF for ARMA(1,1)

Now we need to find 7,

Multiply the ARMA representation by Y;; and take
expectations

V1= ¢E(Yt2—1)+ E(yt—lgt )"’ 6E(yt—1‘9t—1)

E(yt_lé‘t ) =0 (past values of y can’t be affected by future
innovations) and E(y,,&.,)= E(sf_l):az (from the Wold
form for y., ). Hence

71 :¢70+‘9O-2
The 2 equations for 7, and 71 solve to give
_1+<92+2¢<902
Yo = 1_¢2
1
" | +¢9)(<z+9)62
1-¢




ACF for ARMA(1,1)

Now find 7, . Multiply the ARMA representation by Y, ,
and take expectations

7, = PE(YeaYio) T Ele i)+ e 1Yis )
=9y,
By a similar logic
Ve =PV K>1

= ¢k_l7/1
So the autocovariances and autocorrelations (divide the »,
by 7,) will decay for

9| <1

i.e., assuming the process is stationary.



Appendix 2: ACFs and PACFs of simulated ARMA
processes (Compare with table on slide 23)

Autocorrelation

Partial Correlation

AC

PAC

Q-Stat

Prob

|***** |
|***** |
|**** |
|**** |
|*** I
|*** |
|
(o
(N

(O

|***** |

|**

© 0o ~NO O, WN PR

[N
o

0.712
0.655
0.540
0.465
0.392
0.335
0.285
0.243
0.208
0.176

0.712
0.300
0.000
-0.001
-0.004
0.002
0.002
0.000
0.002
-0.003

50677.
93552.
122714
144372
159760
170989
179113
185008
189317
192397

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Autocorrelation

Partial Correlation

AC

PAC Q-Stat

Prob

***I

*l

***l
**l
**l

"l
"l
"l
"l
"l

|

|

O 0O ~NO O WN P

10

-0.344
-0.140
-0.002
0.000
0.006
-0.006
-0.009
0.009
0.006
-0.004

-0.344
-0.293
-0.205
-0.162
-0.121
-0.104
-0.096
-0.073
-0.054
-0.047

11814.
13784.
13784.
13784.
13788.
13791.
13799.
13806.
13810.
13811.

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

AR(2):4 =05, ¢,=0.3

MA(2): 6,=-0.6, 6,=-0.2




Autocorrelation

Partial Correlation

AC

PAC

Q-Stat

Prob

|***** |

|***
|*

|*

|***** |

**l

|*

©O© 00N O~ WN PP

[EnY
o

0.689
0.338
0.166
0.085
0.046
0.025
0.015
0.012
0.011
0.010

0.689
-0.260
0.106
-0.037
0.017
-0.007
0.006
0.003
0.003
0.002

47423.
58818.
61574.
62299.
625009.
62570.
62591.
62605.
62617.
62628.

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

ARMA(1,1):
$=05 6=0.4

Autocorrelation

Partial Correlation

AC

PAC

Q-Stat

Prob

|****** |

|***

|

|

|****** |

*****l

|**

©O© 00 ~NOO Ok WN PP

10

0.776
0.364
0.053
-0.073
-0.078
-0.043
-0.013
0.001
0.005
0.004

0.776
-0.596
0.251
-0.042
-0.027
0.022
-0.011
0.004
-0.000
-0.001

60180.
73449.
73728.
74254,
74860.
75045.
75063.
75063.
75066.
75067.

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

ARMA(2,2):

4 =08 ¢4, =-0.3,
6,=0.6,0,=0.2
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