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Introduction

Univariate time series modeling for stationary 
stochastc processes (Brooks Chp 5)
1. Different types of time series model: 

AR, MA and ARMA models.
2. The ACFs and PACFs of different types of time 
series models.
3. Time series model selection using ACFs and 
PACFs.
4. Time series model selection using information 
criteria.
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Introduction

ARMA models provide predictions of a time series using 
past values of the series and/or innovations (error 
terms).

ARMA models are  usually atheoretical/purely statistical 
models (not normally based on economic/finance 
theory).

The principle use of ARMA models is for forecasting a series 
(not policy).

ARMA models often provide better out of sample forecasts 
than structural (i.e., theory motivated) models: 
⇒Seminar 4: Forecast comparisons of GMM CIP 
(structural) model versus an ARMA model for the 
forward premium.
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White noise process

A white noise process is a basic ‘building block’ for time-
series models.

In essence, white noise is a process with no temporal 
structure – it’s purely ‘random’ .
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Wold Decomposition Theorem 

Any weakly stationary process can be decomposed into 
the sum of a: 
1. Purely deterministic component plus
2. A linear combination of white noise processes

If the number of weights is infinite we need to assume that 
the weights      are absolutely summable for the series to 
be convergent/stationary. 

For example, if the weights decay geometrically to zero 
then the series is convergent/stationary (see below).
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Wold Decomposition Theorem

The Wold decomposition forms the basis for ARMA 
modeling. 

Different patterns of ψ weights give rise to different types 
of ARMA model.

Also the ‘memory’ of a time-series process depends on the 
Wold form of the model.

There is a one to one correspondence between the 
pattern of the ψ weights in the Wold form of a series 
and its autocorrelation function. 

Without loss of generality we’ll assume the deterministic 
component/mean μ=0 in the remainder of today’s 
analysis.
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Autoregressive (AR) processes

Suppose

Or                                

Where L is the ‘lag operator’:

( )
tt

ttt

tttt

j
j

y

y

εφ
φεεφε
εφφεε

φψ

+=
+++=
+++=

=

−

−−

−−

1

21

2
2

1

...
...

( ) ttyL εφ =−1

mtt
m

mtt
m

tt

yyL

yyL

yLy

+
−

−

−

=

=

= 1

First-order AR process: 
AR(1)



8Warwick Business School

Sums of geometric series (useful results for later)

The sum to n terms of a geometric series is given by

Therefore

Accordingly

If then                The sum of an infinite geometric series is 
therefore  
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Sums of geometric series: AR(1) model

The Wold form of an AR(1) model is an infinite geometric 
series:

The term in brackets is an infinite geometric series with       

Therefore
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Stationarity conditions for AR models

Note that the Wold representation converges if

is the stationarity condition for an AR(1) process.
An AR(p) process is defined:

An AR(p) process is stationary if all the roots of the 
‘characteristic equation’

lie outside of the unit circle. 
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Stationarity conditions: examples

The characteristic equation is:

So this AR(1) process is stationary.  Equivalently: 

Note that a random walk/martingale is non-stationary -
it’s an AR(1) process with  
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Stationarity conditions: examples

The characteristic equation is:
⇒

Note that the first difference of y is a stationary AR(1) 
process: 
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Autocorrelation function (ACF) for AR(1) model
The ACF describes the ‘memory’ of a stochastic process.
For a stationary process the ACF will decay to zero.
For a non-stationary process there is no decay.
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ACF of AR(1) processes
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Moving average (MA) processes
Going back to the Wold representation suppose

⇒

An MA(q) process is given by

ALL finite order (q<∞) MA(q) models are stationary (the 
Wold form is convergent).

However an important condition for MA models is 
invertibility. An MA(q) process is invertible if all the roots 
of 

lie outside of the unit circle
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Invertibility: example

The characteristic equation is:

This MA(1) process is invertible.  Invertibility means that the 
process has a convergent infinite order autoregressive 
representation
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ACF for MA models
For an MA(1) process the memory cuts off after the first lag: 

For an MA(q) process the memory cuts off (the auto-
correlations are zero) after lag  q.

Again, this shows that all MA(q) (finite q) processes are 
stationary.
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Autoregressive-moving-average (ARMA) models

By combining AR and MA models we get ARMA models.  For 
example: 

This process is stationary and invertible if:          
More generally an ARMA(p,q) model is given by:

An ARMA(p,q) is stationary and invertible if all the roots of  

lie outside of the unit circle.
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Stationarity/invertibility conditions: example

Therefore this ARMA(1,1) process has convergent infinite 
order MA and AR representations (due to its stationarity
and invertibility respectively).

Indeed, any stationary and invertible ARMA(p,q) process 
will have convergent MA(∞) and AR(∞) representations.
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ACF of stationary ARMA models

ACFs of two ARMA(1,1) processes
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See Appendix 1 for
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autocorrelations of an
ARMA(1,1) model. 
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In summary…
A stationary AR process has

• a finite order AR representation
• a convergent infinite order MA representation (Wold form)

⇒the ACF has an infinite decay

An invertible MA process has
• a convergent infinite order AR representation
• a finite order MA representation

⇒the ACF of an MA(q) process cuts off after lag q.

A stationary and invertible ARMA process has
• a convergent infinite order AR representation
• a convergent infinite order MA representation

⇒the ACF of an ARMA process has an infinite decay

The information in the Wold form/ACF is not sufficient to 
distinguish between different AR and ARMA models.

We need to look at information contained in the AR form of 
the model…
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The Partial Autocorrelation Function (PACF)

The         partial autocorrelation is the coefficient         in the AR 
representation:

The partial correlations  measure the correlation between       
and          net of the effects of

For an AR(p) model                for k>p.  The PACF is zero for k>p.
However invertible MA(q) and ARMA(p,q) models have 

convergent infinite order AR representations.
Therefore the PACF for  an MA(q) or ARMA(p,q) model (but 

not an AR(p) model) displays an infinite decay.
(Note that the ACF can be used to distinguish between MA(q) 

and ARMA(p,q) models.)     
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Table summarizing stylized shapes of ACF/PACFs for 
AR, MA and ARMA models

Model ACF PACF 
AR(1) Infinite geometric decay (or possible 

damped sine-wave if roots of 
characteristic equation are complex) 

Single spike at lag 1; 0 thereafter 

AR(p) Infinite geometric decay (or possible 
damped sine-wave) 

Spikes at first p lags; 0 thereafter 

MA(1) Single spike at lag 1; 0 thereafter Infinite geometric decay (or 
possible damped sine-wave) 

MA(q) Spikes at first q lags; 0 thereafter Infinite geometric decay (or 
possible damped sine-wave) 

ARMA(1,1) Spike at lag 1 followed by an infinite 
geometric decay (or possible damped 
sine-wave) 

Spike at lag 1 followed by an 
infinite geometric decay (or 
possible damped sine-wave) 

ARMA(p,q) Spikes at first q lags followed by an 
infinite geometric decay (or possible 
damped sine-wave) 

Spikes at first p lags followed by 
an infinite geometric decay (or 
possible damped sine-wave) 

 

See Appendix 2 for examples of ACFs/PACFs for simulated ARMA models
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ARMA model selection: Box-Jenkins approach
1. Identification 
 
Use ACF and PACF to 
identify a tentative 
AR/MA/ARMA model 

2. Estimation 
 
Estimation of the 
parameters of the model 
identified at step 1. 

3. Diagnostic Checking 
 
Check  
i) the coefficients of the 
model are significant 
ii) the residuals from the 
model are white noise 

Is the model adequate? 

Yes 

STOP 

No 

( ) ( )kkQ 2~ χ

Use Q-statistics (see lecture 2) to test the 
significance of the correlations in the data at Step 1.

If the model identified at Step 1 is adequate
it should ‘mop up’ all the dynamics in the
data ⇒ the residuals should be white noise.

Therefore use Q-stats again at Step 3 to
check that the model’s residuals are white noise.
The Q stats for the residuals have the following 
distributions under the null of no autocorrelation:

If the null is rejected the investigator will need
to go back to Step 1 to identify a better model. 

Model estimation (Step 2) can be carried out by 
OLS for AR models or by Maximum Likelihood
for MA or ARMA models.

( ) ( ) ( )1or  ~ 22 −−−−− qpkqpkkQ χχ
Model with constantModel without constant
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Using Information Criteria to aid model selection

For real financial data an AR/MA/ARMA model is only an approximation to 
the true DGP.  

Therefore real data will rarely display the stylized shapes associated with 
true AR/MA/ARMA models.

This makes it quite hard (and very subjective) to select an AR/MA/ARMA 
model for financial data based on looking at ACFs/PACFs.

Instead it’s popular nowadays to use information criteria to aid model 
selection.

The objective is to choose a model which minimizes the value of the  
information criterion.  These criteria have two components:
1. A function of the residual sum of squares.
2. A penalty function which increases as extra AR/MA terms are added.

Adding in extra AR and/or MA terms to a model will 
i) reduce the RSS (thereby reducing the information criterion).
ii) increase the penalty function (increasing the information criterion).

Additional AR/MA terms will only reduce the information criterion if the fall 
in the RSS more than outweighs the increase in the penalty function.
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Examples of commonly used information criteria 

SC imposes the stiffest penalty for T>8  ⇒

SC therefore selects more parsimonious models 
(fewer parameters) than either AIC or HQIC.

SC tends to be preferred because it estimates m 
consistently.
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Conclusions

ARMA models are useful for forecasting time-series 
data but not for formulating policy (need 
structural models for this).

Identifying ARMA models can be based on visual 
inspection of ACFs and PACFs (Box-Jenkins 
approach).  However this can be very subjective.

Information criteria can provide a more objective 
basis for choosing between different ARMA 
models. 
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Appendix 1: ACF for ARMA(1,1) model (for your 
information only: not examinable)  

Write the ARMA(1,1) model

With Wold form

First obtain the variance. Multiply the ARMA form by         
and take expectations  

From the Wold form                                and  
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ACF for ARMA(1,1) 

Now we need to find
Multiply the ARMA representation by           and take 

expectations 

(past values of y can’t be affected by future 
innovations) and                                      (from the Wold
form for       ).  Hence

The 2 equations for         and         solve to give  
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ACF for ARMA(1,1) 

Now find     .  Multiply the ARMA representation by       
and take expectations

By a similar logic

So the autocovariances and autocorrelations (divide the         
by     )   will decay for 

i.e., assuming the process is stationary.
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Appendix 2: ACFs and PACFs of simulated ARMA 
processes (Compare with table on slide 23)

 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob

        |*****  |         |*****  | 1 0.712 0.712 50677. 0.000
        |*****  |         |**     | 2 0.655 0.300 93552. 0.000
        |****   |         |       | 3 0.540 0.000 122714 0.000
        |****   |         |       | 4 0.465 -0.001 144372 0.000
        |***    |         |       | 5 0.392 -0.004 159760 0.000
        |***    |         |       | 6 0.335 0.002 170989 0.000
        |**     |         |       | 7 0.285 0.002 179113 0.000
        |**     |         |       | 8 0.243 0.000 185008 0.000
        |**     |         |       | 9 0.208 0.002 189317 0.000
        |*      |         |       | 10 0.176 -0.003 192397 0.000

 
 

 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob

     ***|       |      ***|       | 1 -0.344 -0.344 11814. 0.000
       *|       |       **|       | 2 -0.140 -0.293 13784. 0.000
        |       |       **|       | 3 -0.002 -0.205 13784. 0.000
        |       |        *|       | 4 0.000 -0.162 13784. 0.000
        |       |        *|       | 5 0.006 -0.121 13788. 0.000
        |       |        *|       | 6 -0.006 -0.104 13791. 0.000
        |       |        *|       | 7 -0.009 -0.096 13799. 0.000
        |       |        *|       | 8 0.009 -0.073 13806. 0.000
        |       |         |       | 9 0.006 -0.054 13810. 0.000
        |       |         |       | 10 -0.004 -0.047 13811. 0.000

 
 

3.0  ,5.0 21 == φφAR(2):                      

2.0  ,6.0 21 −=−= θθMA(2):                          
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Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob

        |*****  |         |*****  | 1 0.689 0.689 47423. 0.000
        |***    |       **|       | 2 0.338 -0.260 58818. 0.000
        |*      |         |*      | 3 0.166 0.106 61574. 0.000
        |*      |         |       | 4 0.085 -0.037 62299. 0.000
        |       |         |       | 5 0.046 0.017 62509. 0.000
        |       |         |       | 6 0.025 -0.007 62570. 0.000
        |       |         |       | 7 0.015 0.006 62591. 0.000
        |       |         |       | 8 0.012 0.003 62605. 0.000
        |       |         |       | 9 0.011 0.003 62617. 0.000
        |       |         |       | 10 0.010 0.002 62628. 0.000

 
  

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

        |****** |         |****** | 1 0.776 0.776 60180. 0.000 
        |***    |    *****|       | 2 0.364 -0.596 73449. 0.000 
        |       |         |**     | 3 0.053 0.251 73728. 0.000 
       *|       |         |       | 4 -0.073 -0.042 74254. 0.000 
       *|       |         |       | 5 -0.078 -0.027 74860. 0.000 
        |       |         |       | 6 -0.043 0.022 75045. 0.000 
        |       |         |       | 7 -0.013 -0.011 75063. 0.000 
        |       |         |       | 8 0.001 0.004 75063. 0.000 
        |       |         |       | 9 0.005 -0.000 75066. 0.000 
        |       |         |       | 10 0.004 -0.001 75067. 0.000 

 
 

4.0  ,5.0 == θφ

2.0 ,6.0
 ,3.0 ,8.0

21

21

==
−==

θθ
φφ

ARMA(1,1):  

ARMA(2,2):   
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