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Introduction

Last time...
Estimating and testing CAPM and 3-factor model.

Need to carry out misspecification testing (test assumptions of
the CLRM).

Today...

Consequences of heteroscedasticity and autocorrelation
for OLS estimators.

Look at a solution widely used in empirical finance: Newey-West
HAC var-cov matrix.
Consequences of endogenous regressors (correlated
with the error term).

Alternative estimators used in empirical finance when regressors
are endogenous: IV/GMM



Consequences of heteroscedasticity and
autocorrelation

In the presence of heteroscedasticity or autocorrelation
OLS point estimators remain unbiased and consistent
(see e.qg., Gujarati Chps 11+12; Brooks Chp 4)

An estimator is consistent if its sampling distribution ‘collapses’ on the true
parameter value as T—w

However the standard formula for the variance-
covariance matrix...

var(,é)z o (XX )™

...Is no longer correct.

Therefore whilst OLS point estimators are unbiased (and
consistent) inferences based on the above formula (¢-,
F-tests and confidence intervals) are invalid.




Consequences of heteroscedasticity and
autocorrelation

Under het. and/or auto. the correct formula for var(,B) is:

Q is the variance-covariance matrix of
the error terms. If the errors are homoscedastic
and uncorrelated then this matrix is diagonal

PaN

Var(ﬂ): (X X )_1 X QX (X X )_1 Q=c"l seeAppendix1
0O = E(gg') In that case

var(,bA’)z o’ (XX )*

e

Therefore if a consistent estimator of var(ﬂ) can be found
then we can...
Use OLS point estimators (which are unbiased and consistent)
Combined with a consistent estimator of Var(ﬂr)

...yielding an estimator which is consistent and gives valid
inferences.

Principle underlying the use of OLS point estimates with
inferences based on a Newey-West HAC var-cov matrix.




Newey-West heteroscedasticity and autocorrelation
consistent (HAC) variance-covariance matrix

A
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This first term corrects the var-cov matrix for

heteroscedasticity:

o/ is estimated using &’

(on its own this term is known as a White var-cov matrix)

T\7T IS a consistent
estimator of XQX

The second term corrects the var-cov matrix for autocorrelation:

Elss,. J)ls estimated using &,&,_

j

lag increases.

Bartlett weights are commonly used =

This estimator truncates the autocorrelations at lags g<T.
It also gives a diminishing weight w to autocorrelations as the

W; =1- J/q
W, =1,w, =0




Application of Newey-West HAC variance-covariance
matrix

So to re-cap:

OLS point estimates with inferences based on Newey-West HAC
standard errors (rather than OLS standard errors) is one solution
to the problem of het. and/or auto.

However this estimator is not BLUE — there is an estimator with a
smaller variance (more efficient): Generalized Least Squares (GLS).
Nonetheless Newey-West HAC var-cov matrices are widely
used in empirical finance.

A common instance in which they are used is where the
holding period for returns is greater than the sampling
frequency of the data.

—Overlapping data problem (see Verbeek Chp 4.11.3 for an
illustration of this problem in the FX market and see
below).




Overlapping data problem

Suppose we have a sample of daily data for returns but our model is for m-

period holding returns (m > one day)

rtm =Pt =P = (pt _ pt—l)+(pt—l - pt—2)+"'+(pt+l—m o pt—m)

=l e,

+1-m

D log prices

Even if the one-period returns are independent the m-period returns for

returns are correlated:

’

different periods consist of ‘overlapping Weturns = the m-period

var(r™ )= mvar(r)

cov(r™, i, )= var(r,)
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The autocorrelations decay to zero after m-1 lags.
This is indicative of an MA(m-1) process.

Any static model involving the m period returns will therefore have an
autocorrelated [MA(m-1)] error term = OLS inferences are invalid.

Use of Newey West standard errors is an appropriate remedy in this case.




Method of Moments Estimation (MME)

OLS as a MME
y=XB+¢
The CLRM requires the following population moment conditions
’ This is a kx1 vector.
E (X 5) =0 =There are k moment conditions which the OLS
estimator must satisfy.

A2:E (g‘X ): 0 These moment conditions imply the values of X

= E(X's)=0 are determined outside of the model:

X is linearly independen t X Is exogenous

of the error term

Fa

The MME finds £ by solving the sample moment conditions

%X@:%X’(y—xﬁ):o

There are k sample moment conditions and k unknown_
parameters =possible to find a unique solution for /.



OLS as a MME

1 / 0 —_
?X (y—X,B)—O
— X =XXp
= B =(XX)"Xy

The MM estimator for the CLRM is identical

to the OLS estimator.



Properties of MME

MME is a general approach to estimation which imposes
population moment conditions (required by the
statistical model) to hold exactly in the sample.

These moment conditions are then solved for the
unknown parameters in the model (example above).

MME has 3 attractive features:
1. It makes no distributional assumptions.
2. ltis a consistent estimator.

3. ltis a very general technique (e.g., applicable to non-
linear models).



Endogenous regressors

In many instances in economics/finance there is a two
way or simultaneous relationship between X andy.

—both X and y are determined inside the model.

—X is endogenous.

Endogeneity is common due to the non-experimental
nature of economic/finance data =

E(X's)=0
In that case OLS/MME estimation (assuming E(X's)=0)
is invalid. The estimator is biased (and inconsistent)

ey

B=(XX)"XYy

=(XX)*X'(XB+¢)| — [E(B)=p+(XX) E(X%)
= B+(XX ) X + B unless E(X's)=0.




Examples of endogeneity in finance: testing CIP and
UIP (Cuthberston & Nitzsche Chps 24.3/4, 25.1/2)

Covered Interest Parity
F"  1+r,
S, 1+r

Where F" (h-period forward exchange rate), S (spot
exchange rate) are denominated in terms of the
domestic currency price of a unit of foreign
exchange.

r (domestic interest rate), r* (foreign interest rate)
(interest rate on h-period T-Bills).



CIP implies you can’t earn abnormal profits from...

1.
2.

Borrowing £x at the rate .

Converting £ $ at the spot rate S:

Investing in h-period US bonds at the rate r*:

£x—>$i
S

$§(1+ r*)

Simultaneously switching $’s back to £’s at the h-

period forward rate F:

h

£%x(1+ r*)

Given riskless arbitrage (the investors receipts are
covered in the forward market) would expect under

. h
EMH that: %x(1+ r*)z X(1+r)
F'  1+r
P

S 1+r




Uncovered Interest Parity

Similar idea to CIP but with the key difference that investors
are willing to take a bet on what the exchange rate will be
at the time of converting $’s back to £.

Et (St+h ) 1+ rt

S, 1+r

The investment in $’s is risky because the £ receipts are not
covered (uncovered) in the forward market (contrast CIP).

=UIP will only hold if the market is dominated by risk
neutral speculators.



Testing CIP and UIP

If we want to test these hypotheses it is not clear which
variable is the dependent variable and which is the
explanatory variable.

Both sides of the equation will adjust to deviations from
equilibrium.

For example: In CIP, suppose a shock causes the forward
rate to depreciate (F/S rises). As a result, the demand for

foreign assets will rise (p*rises, r* falls) which drives the
market back to CIP equilibrium.

In other words the variables (forward rate premium and
relative interest rates) are endogenous.




Testing equations for CIP and UIP

CIP €qg uation h-period forward rate: h=1.

h™ *
(f — s)t =a +,B(rk—’r )t + 2% + &
\/
UIP eq uation h-period interest rates

AS, :a+,8(r—r*)‘ + X + &

where f =log(F),s = log(S )and Iog(1+ F)E r (x
represents other variables).

For each relationship the null hypothesis is

Hy:a=0,=1y=0

To repeat, OLS is invalid for testing these hypotheses
due to the endogeneity of the regressors.




Instrumental Variable Estimator (IVE)

In the case of endogenous regressors the model is:

y=Xf+¢
E(X's)=0

»
L

OLS/MME invalid

Zis a Txm matrix
(Recall X is a Txk matrix).

/

But suppose we can find a set of m variables Z that are
correlated with X but not ¢.

In that case the Z are Instrumental Variables (1V).

The IVs must satisty:

E(Z's)=0 (Z uncorrelated with the error term) V1
E(zX)#=0 (Z correlated with/informativeabout X) 1V 2




IVE (just/exactly identified model)

Given the above moment conditions and assuming the
model is just/exactly identified (m=k)...

—=0One instrument for each endogenous regressor
...then we can solve the k sample moment restrictions to

find the IV estimator of £

1_,~ 1._, n
?ZEZ?Z(y—XIBlV):O
= ZYy=2Z'Xp,

:>,£)|v :(Z'X)_1Z’y

This IVE is another example
of a MME.

The estimator is consistent if
IV1 and IV2 hold.

Note that if m<k the model is
under-identified = it is not
possible to estimate .

YOU NEED AT LEAST ONE INSTRUMENT
FOR EACH ENDOGENOUS REGRESSOR
FOR IV TO WORK.




IVE (over-identified model): Two-stage least squares

(2SLS)

If m>k there is no unique solution for 3 based on the

previous IVE/MME.

We have to add a preliminary step to the previous estimator

STAGE 1:Regresstheendogenousvariableson theinstrument

X =Zm +V,, 1=1..k

This stage purges the
regressors of endogeneity.
(The fitted values are linear

Obtain thefitted valuesx.. FormaT xk matrixof the fitted values:| | combinations of the

X = (% %)

Instruments.)

STAGE 2 :Solve the k sample moment restrictions

Stage 2 is equivalent to regressing
y on the stage 1 fitted values
(instead of X).

This approach is also valid if the model
is just identified.

If the model is just-identified the 2SLS
estimator is identical to the IVE/MME on
the previous slide.




2SLS: CIP relationship between UK-US (60 day/3 month
forward premium) (see also Appendix 2)

Dependent Variable: LOG(UK_FRATE_USD GBP)
-LOG(UK_SPOT RATE_USD_GBP)

Method: Two-Stage Least Squares

Date: 02/05/06 Time: 21:12

Sample (adjusted): 5/10/2001 9/30/2005

Included observations: 1147 after adjustments

Instrument list: LOG(UK_GDP)-LOG(UK_GDP(-1))

LOG(US_GDP) -LOG(US_GDP(-1)) UK_TBILLS(-1) US_TBILLS(-1)

Variable Coefficient Std. Error t-Statistic Prob.

C -0.00721 0.000423 -17.0571 0
(UK_TBILLS-US_TBILLS) 0.947822 0.016892 56.11167 0
R-squared 0.734942  Mean dependent ve  0.01585
Adjusted R-squared 0.73471  S.D. dependent var 0.006551
S.E. of regression 0.003374  Sum squared resid 0.013037
Durbin-Watson stat 1.458438  Second-stage SSk 0.013336

Hy:a=0,=1

Test Statis Value df

F-statistic 3630.205/(2, 1145)
Chi-square 7260.41

2

Probability

0
0




Generalized Method of Moments (GMM) estimator

MME works when m=k — if m>k the model is over-
identified (more equations than unknowns).

One solution would be to drop instruments — but this
would reduce the efficiency of the estimator.

Instead GMM chooses estimates of § such that the m
sample moments are as close as possible to zero.

This is done by minimizing a quadratic form:

W is an mxm weighting matrix. It tells how much

Choose ﬂ to minimize weight to attach to each of the sample moment

conditions.
1. 1_,. | | |
— g'Z | = / E Sample moments with a low variance should receive
T T more weight than those with a large variance

(because they’re more informative about the p’s).

This suggests using the inverse of the var-cov matrix of
the sample moments as a weighting matrix




IV as a GMM estimator
The GMM estimator is given by

B\GMM - (X ZW; Z'X )_1 XZW; ZYy

It we assume homoscedasticity and no autocorrelation then

E(ee’)= o’

-1 -1
1 1 — ——
’ 2 The weighting matrix is the inverse
= WT — |:_I_ Z E (88 )Z = O T Z Z of the var-cov of the sample moments.

In that case 2SLS and GMM are identical X —Zr+v_ (2SLSStagel)

Bom =(X2(z2ZY'ZX ) X2(22) 2|  [F=(Z2)°ZX
—(Xx)‘liy—;ﬁ = X=27=2(2Z)"ZX
— - MV :>>’(\':XZ(Z'Z)_12,




IV as a GMM estimator

More generally we can allow for autocorrelation and/or
heteroscedasticity in the model.

In that case the weighting matrix is given by
1 -1

W, = (—Z’QZ)
T

We can estimate the var-cov of the sample moments...

iZ'QZ
T

...using a Newey-West HAC estimator (see slide 5).




GMM estimation of the UIP relationship

The CIP relationship tested previously was for a 3-month
forward premium.

The corresponding test of UIP is therefore for the 3 month
holding period return on sterling.

But the data are sampled daily:
—overlapping data problem.
—autocorrelated distrubances (see above).
Also there is an endogeneity problem with the regressor

—s0 we need to use an IV/GMM estimator

Therefore we’ll use an IV/GMM estimator with Newey-
West estimated weights.



GMM with Newey-West HAC Var-Cov matrix: Testing
UIP between the UK and US (60 day/3 month holding

period returns)

Dependent Variable: LOG(UK_SPOT_RATE_USD_GBP(60))
-LOG(UK_SPOT_RATE_USD_GBP)

Method: Generalized Method of Moments

Date: 01/31/07 Time: 21:29

Sample (adjusted): 5/10/2001 9/30/2005

Included observations: 1147 after adjustments

Kernel: Bartlett, Bandwidth: Fixed (6), No prewhitening

Simultaneous weighting matrix & coefficient iteration

Conwergence achieved after: 5 weight matrices, 6 total coef iterations

Instrument list: LOG(UK_GDP)-LOG(UK_GDP(-1))

LOG(US_GDP)-LOG(US_GDP(-1)) UK_TBILLS(-1) US_TBILLS(-1)

Variable Coefficient| Std. Error t-Statistic Prob.

C 0.010532 0.010875 0.968495 0.333
(UK_TBILLS-US_TBILLS) -0.91841| 0.454022 -2.02284 0.0433

R-squared 0.029879| Mean dependent ve -0.01115
Adjusted R-squared 0.029031  S.D. dependent var 0.038325
S.E. of regression 0.037764  Sum squared resid 1.632947

Durbin-Watson stat 0.039079 J-statistic 0.011141

Hy:a=0,48=1

Test Statis Value df

F-statistic 87.37413 (2, 1145)
Chi-square 174.7483

2

Probability

0
0




Conclusions

1. Newey-West HAC var-cov matrices are used widely in
empirical finance to correct OLS inferences for het.
and/or auto.

It’s a particularly useful approach in the context of
overlapping data problems.

2. Endogenous variables are common in
economics/finance (the data are non-experimental)

Use an IV/GMM estimator not OLS when the
explanatory variables are endogenous.

3. Weight the sample moments appropriately if there is
heteroscedasticity and/or autocorrelation.

Estimate the weights with Newey-West’s HAC estimator.
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Appendix 1: Variance-covariance matrix of the error
term

[ E(gf) E(glgz) E(glgT)\
0= E(se') | El&:2) E(e2)  Elee)
\E(g;6,) Elere,) - E(g_?)/

The terms on the diagonal are the variances of the error
terms = Gtz

The terms off the diagonal are the covariances between
errors in different periods (auto-covariances).

Under the assumptions homoscedasticity and no
autocorrelation then:

2
Q 2 I A diagonal matrix with O on the
= O diagonal and zeroes everywhere else




Appendix 2: Interpreting the CIP results

CIPis rejected (H,:a=0,8 =1 is rejected)
The model suggests an abnormal return of -0.8%
f-s= r—r*+o?+(,3—1Xr—r*)
=r—r"—0.007 +(0.948 -1)(0.043-0.020)
=r—r —0.008

(the sample average UK and US interest rates are 4.3%
and 2.0% respectively).

Accordingly

F - 1+r e_0'008
S 1+r

The return for a UK investor (investing £x in the US) is
therefore

£%x(l+ r)=£e 0% x(1+r)




Interpreting the CIP results

In other words the UK investor makes a loss
£e %% x(1+r)£x(1+r)<0

So if x=£1m and r=4.3% the implied loss is about £8,311
(annualized gross).

However for a US investor (investing $x in the UK) the
return is:

$% X(1+1)=$e>%x(1+r")

So this investor gains $e"™x{1+r")-x({L+r")>0

So if x=$1m and r*=2.0% the implied risk free profit is
about $8,193 (annualized gross).

But transactions costs of 0.8% or more would wipe out
any abnormal returns.
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