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Introduction

Last time…
Estimating and testing CAPM and 3-factor model.
Need to carry out misspecification testing (test assumptions of 
the CLRM).

Today…
Consequences of heteroscedasticity and autocorrelation 
for OLS estimators.

Look at a solution widely used in empirical finance: Newey-West 
HAC var-cov matrix. 

Consequences of endogenous regressors (correlated 
with the error term).

Alternative estimators used in empirical finance when regressors
are endogenous: IV/GMM
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Consequences of heteroscedasticity and 
autocorrelation

In the presence of heteroscedasticity or autocorrelation 
OLS point estimators remain unbiased and consistent 
(see e.g., Gujarati Chps 11+12; Brooks Chp 4)

However the standard formula for the variance-
covariance matrix…

…is no longer correct.  
Therefore whilst OLS point estimators are unbiased (and 

consistent) inferences based on the above formula (t-, 
F-tests and confidence intervals) are invalid. 

( ) ( ) 12ˆvar −′= XXσβ

An estimator is consistent if its sampling distribution ‘collapses’ on the true 
parameter value as T→∞
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Consequences of heteroscedasticity and 
autocorrelation

Under het. and/or auto. the correct formula for                is: 

Therefore if a consistent estimator of              can be found 
then we can…

Use OLS point estimators (which are unbiased and consistent)
Combined with a consistent estimator of

…yielding an estimator which is consistent and gives valid 
inferences.     

Principle underlying the use of OLS point estimates with 
inferences based on a Newey-West HAC var-cov matrix.

( )β̂var

( ) ( ) ( )
( )εε

β
′=Ω

′Ω′′= −−

E
XXXXXX 11ˆvar

( )β̂var

( )β̂var

Ω is the variance-covariance matrix of 
the error terms.  If the errors are homoscedastic
and uncorrelated then this matrix is diagonal

In that case

1Appendix  see   2Iσ=Ω

( ) ( ) 12ˆvar −′= XXσβ
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Newey-West heteroscedasticity and autocorrelation 
consistent (HAC) variance-covariance matrix
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This first term corrects the var-cov matrix for 
heteroscedasticity:

(on its own this term is known as a White var-cov matrix) 

The second term corrects the var-cov matrix for autocorrelation:

This estimator truncates the autocorrelations at lags q<T.
It also gives a diminishing weight w to autocorrelations as the 
lag increases.  

Bartlett weights are commonly used ⇒

22 ˆ using estimated is tt εσ

( ) jttjttE −− εεεε ˆˆ using estimated is 
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Application of Newey-West HAC variance-covariance 
matrix

So to re-cap:
OLS point estimates with inferences based on Newey-West HAC 
standard errors (rather than OLS standard errors) is one solution 
to the problem of het. and/or auto.
However this estimator is not BLUE – there is an estimator with a 
smaller variance (more efficient): Generalized Least Squares (GLS).

Nonetheless Newey-West HAC var-cov matrices are widely 
used in empirical finance.

A common instance in which they are used is where the 
holding period for returns is greater than the sampling 
frequency of the data.

⇒Overlapping data problem (see Verbeek Chp 4.11.3 for an 
illustration of this problem in the FX market and see 
below). 
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Overlapping data problem
Suppose we have a sample of daily data for returns but our model is for m-

period holding returns (m > one day)

Even if the one-period returns are independent the m-period returns for 
different periods consist of ‘overlapping’ one-period returns ⇒ the m-period 
returns are correlated:                    

Any static model involving the m period returns will therefore have an 
autocorrelated [MA(m-1)] error term ⇒ OLS inferences are invalid.

Use of Newey West standard errors is an appropriate remedy in this case.
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Method of Moments Estimation (MME)

OLS as a MME

The CLRM requires the following population moment conditions

The MME finds        by solving the sample moment conditions

There are k sample moment conditions and k unknown 
parameters ⇒possible to find a unique solution for     . 

εβ += Xy

( ) 0=′εXE

( ) 0ˆ1ˆ1
=−′=′ βε XyX

T
X

T

β̂

This is a k×1 vector.
⇒There are k moment conditions which the OLS 
estimator must satisfy.

These moment conditions imply the values of X
are determined outside of the model:

X is exogenous

β̂

( )
( )

error term  theof
t independenlinearly  is X

0
0 :A2

=′⇒

=

ε
ε

XE
XE
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OLS as a MME

( )

( ) yXXX
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XyX
T

′′=⇒

′=′⇒

=−′

−1ˆ

ˆ

0ˆ1

β

β

β

The MM estimator for the CLRM is identical
to the OLS estimator. 
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Properties of MME

MME is a general approach to estimation which imposes 
population moment conditions (required by the 
statistical model) to hold exactly in the sample.

These moment conditions are then solved for the 
unknown parameters in the model (example above). 

MME has 3 attractive features:
1. It makes no distributional assumptions. 
2. It is a consistent estimator.
3. It is a very general technique (e.g., applicable to non-

linear models).  
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Endogenous regressors
In many instances in economics/finance there is a two 

way or simultaneous relationship between X and y.
⇒both X and y are determined inside the model.
⇒X is endogenous.

Endogeneity is common due to the non-experimental
nature of economic/finance data ⇒

In that case OLS/MME estimation (assuming                    ) 
is invalid. The estimator is biased (and inconsistent)

⇒

( ) 0=′εXE

( )
( ) ( )

( ) εβ

εβ

β

XXX

XXXX

yXXX

′′+=

+′′=

′′=

−

−

−

1

1

1ˆ

( ) ( ) ( )
( ) .0 unless   

ˆ 1

=′≠

′′+= −

εβ
εββ

XE
XEXXE

( ) 0≠′εXE



12Warwick Business School

Examples of endogeneity in finance: testing CIP and 
UIP (Cuthberston & Nitzsche Chps 24.3/4, 25.1/2)

Covered Interest Parity

Where Fh (h-period forward exchange rate), S (spot 
exchange rate) are denominated in terms of the 
domestic currency price of a unit of foreign 
exchange.

r (domestic interest rate), r* (foreign interest rate) 
(interest rate on h-period T-Bills).
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CIP implies you can’t earn abnormal profits from…

1. Borrowing £x at the rate r.
2. Converting £ $ at the spot rate S:

3. Investing in h-period US bonds at the rate r*:

4. Simultaneously switching $’s back to £’s at the h-
period forward rate Fh:

5. Given riskless arbitrage (the investors receipts are 
covered in the forward market) would expect under 
EMH that:
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Uncovered Interest Parity

Similar idea to CIP but with the key difference that investors 
are willing to take a bet on what the exchange rate will be 
at the time of converting $’s back to £.

The investment in $’s is risky because the £ receipts are not 
covered (uncovered) in the forward market (contrast CIP).
⇒UIP will only hold if the market is dominated by risk   
neutral speculators.
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Testing CIP and UIP

If we want to test these hypotheses it is not clear which 
variable is the dependent variable and which is the 
explanatory variable.

Both sides of the equation will adjust to deviations from 
equilibrium.

For example: In CIP, suppose a shock causes the forward 
rate to depreciate (F/S rises).  As a result, the demand for 
foreign assets will rise (p*rises, r* falls) which drives the 
market back to CIP equilibrium.

In other words the variables (forward rate premium and 
relative interest rates) are endogenous.
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Testing equations for CIP and UIP

CIP equation

UIP equation

where                                      and                  (x 
represents other variables).                           

For each relationship the null hypothesis is

To repeat, OLS is invalid for testing these hypotheses 
due to the endogeneity of the regressors.

( ) tttht xrrs εγβα ++−+=Δ +
*

( ) ( ) tttt
h xrrsf εγβα ++−+=− *

( ) ( )SsFf log,log == ( ) rr ≅+1log

0,1,0:0 === γβαH

h-period forward rate: h≥1.

h-period interest rates
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Instrumental Variable Estimator (IVE)

In the case of endogenous regressors the model is:

But suppose we can find a set of  m variables Z that are 
correlated with X but not ε .

In that case the Z are Instrumental Variables (IV).
The IVs must satisfy: 

( ) 0≠′
+=

ε
εβ

XE
Xy

( )
( )  2      )about  rmative with/info (   0

1             )error term  with the (    0
IVXZXZE
IVZZE
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≠′
=′ε

Z is a T×m matrix
(Recall X is a T×k matrix).

OLS/MME invalid
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IVE (just/exactly identified model)

Given the above moment conditions and assuming the 
model is just/exactly identified (m=k)…
⇒One instrument for each endogenous regressor

…then we can solve the k sample moment restrictions to 
find the IV estimator of β:
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This IVE is another example 
of a MME.

The estimator is consistent if 
IV1 and IV2 hold.

Note that if m<k the model is 
under-identified ⇒ it is not
possible to estimate β. 

YOU NEED AT LEAST ONE INSTRUMENT
FOR EACH ENDOGENOUS REGRESSOR
FOR IV TO WORK.
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IVE (over-identified model): Two-stage least squares
(2SLS)

If m>k there is no unique solution for β based on the 
previous IVE/MME.

We have to add a preliminary step to the previous estimator
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This stage purges the 
regressors of endogeneity.
(The fitted values are linear
combinations of the
Instruments.)

Stage 2 is equivalent to regressing 
y on the stage 1 fitted values 
(instead of X).

This approach is also valid if the model 
is just identified. 

If the model is just-identified the 2SLS
estimator is identical to the IVE/MME on
the previous slide.
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2SLS: CIP relationship between UK-US (60 day/3 month 
forward premium)  (see also Appendix 2)

Dependent Variable: LOG(UK_FRATE_USD_GBP)
        -LOG(UK_SPOT_RATE_USD_GBP)
Method: Two-Stage Least Squares
Date: 02/05/06   Time: 21:12
Sample (adjusted): 5/10/2001 9/30/2005
Included observations: 1147 after adjustments
Instrument list: LOG(UK_GDP)-LOG(UK_GDP(-1)) 
 LOG(US_GDP) -LOG(US_GDP(-1)) UK_TBILLS(-1) US_TBILLS(-1)

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.00721 0.000423 -17.0571 0
(UK_TBILLS-US_TBILLS)/ 0.947822 0.016892 56.11167 0

R-squared 0.734942    Mean dependent va 0.01585
Adjusted R-squared 0.73471    S.D. dependent var 0.006551
S.E. of regression 0.003374    Sum squared resid 0.013037
Durbin-Watson stat 1.458438    Second-stage SSR 0.013336

Test StatisValue  df    Probability

F-statistic 3630.205 (2, 1145)  0
Chi-square 7260.41 2 0

1,0:0 == βαH
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Generalized Method of Moments (GMM) estimator

MME works when m=k – if m>k the model is over-
identified (more equations than unknowns).

One solution would be to drop instruments – but this 
would reduce the efficiency of the estimator.

Instead GMM chooses estimates of β such that the m 
sample moments are as close as possible to zero. 

This is done by minimizing a quadratic form:

⎟
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⎛ ′ εε
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WZ T

W is an m×m weighting matrix.  It tells how much 
weight to attach to each of the sample moment 
conditions.

Sample moments with a low variance should receive 
more weight than those with a large variance 
(because they’re more informative about the β’s).

This suggests using the inverse of the var-cov matrix of
the sample moments as a weighting matrix 
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IV as a GMM estimator
The GMM estimator is given by

If we assume homoscedasticity and no autocorrelation then

In that case 2SLS and GMM are identical 
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of the var-cov of the sample moments.
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IV as a GMM estimator

More generally we can allow for autocorrelation and/or 
heteroscedasticity in the model.

In that case the weighting matrix is given by

We can estimate the var-cov of the sample moments…

…using a Newey-West HAC estimator (see slide 5).  
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GMM estimation of the UIP relationship

The CIP relationship tested previously was for a 3-month 
forward premium.

The corresponding test of UIP is therefore for the 3 month 
holding period return on sterling.

But the data are sampled daily:
⇒overlapping data problem.
⇒autocorrelated distrubances (see above).

Also there is an endogeneity problem with the regressor
⇒so we need to use an IV/GMM estimator

Therefore we’ll use an IV/GMM estimator with Newey-
West estimated weights.
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GMM with Newey-West HAC Var-Cov matrix: Testing 
UIP between the UK and US (60 day/3 month holding 
period returns)

Dependent Variable: LOG(UK_SPOT_RATE_USD_GBP(60))
        -LOG(UK_SPOT_RATE_USD_GBP)
Method: Generalized Method of Moments
Date: 01/31/07   Time: 21:29
Sample (adjusted): 5/10/2001 9/30/2005
Included observations: 1147 after adjustments
Kernel: Bartlett,  Bandwidth: Fixed (6),  No prewhitening
Simultaneous weighting matrix & coefficient iteration
Convergence achieved after: 5 weight matrices, 6 total coef iterations
Instrument list: LOG(UK_GDP)-LOG(UK_GDP(-1)) 
 LOG(US_GDP)-LOG(US_GDP(-1)) UK_TBILLS(-1) US_TBILLS(-1)

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.010532 0.010875 0.968495 0.333
(UK_TBILLS-US_TBILLS)/ -0.91841 0.454022 -2.02284 0.0433

R-squared 0.029879    Mean dependent va -0.01115
Adjusted R-squared 0.029031    S.D. dependent var 0.038325
S.E. of regression 0.037764    Sum squared resid 1.632947
Durbin-Watson stat 0.039079     J-statistic 0.011141

1,0:0 == βαH

Test StatisValue  df    Probability

F-statistic 87.37413 (2, 1145)  0
Chi-square 174.7483 2 0
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Conclusions

1. Newey-West HAC var-cov matrices are used widely in 
empirical finance to correct OLS inferences for het. 
and/or auto.
It’s a particularly useful approach in the context of 
overlapping data problems.

2. Endogenous variables are common in 
economics/finance (the data are non-experimental)
Use an IV/GMM estimator not OLS when the 
explanatory variables are endogenous.

3. Weight the sample moments appropriately if there is 
heteroscedasticity and/or autocorrelation.
Estimate the weights with Newey-West’s HAC estimator.
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Appendix 1: Variance-covariance matrix of the error 
term

The terms on the diagonal are the variances of  the error 
terms   ⇒

The terms off the diagonal are the covariances between 
errors in different periods (auto-covariances). 

Under the assumptions homoscedasticity and no 
autocorrelation then:
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Appendix 2: Interpreting the CIP results

CIP is rejected (                             is rejected) 
The model suggests an abnormal return of -0.8%

(the sample average UK and US interest rates are 4.3% 
and 2.0% respectively).

Accordingly

The return for a UK investor (investing £x in the US) is 
therefore

1,0:0 == βαH
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Interpreting the CIP results

In other words the UK investor makes a loss

So if x=£1m and r=4.3% the implied loss is about £8,311 
(annualized gross).

However for a US investor (investing $x in the UK) the 
return is:

So this investor gains
So if x=$1m and r*=2.0% the implied risk free profit is 

about $8,193 (annualized gross).
But transactions costs of 0.8% or more would wipe out 

any abnormal returns. 

( ) ( ) 0110080 <++− r-£xrx£e .

( ) ( )*008.0 1$1$ rxerx
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