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Introduction

Generalized-Autoregressive-Conditional-
Heteroscedastic (GARCH) processes:

• Motivation for GARCH models.
• Examples of different types of GARCH model.
• Some applications of GARCH in finance. 
• Identifying, estimating and testing GARCH 

models.
⇒Seminar 5: Modelling time-varying volatility in the 

FTSE All-Share Index excess returns.
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Motivation for GARCH processes

Two empirical features of financial return series are 
relevant in this context.  

Firstly, there is the observation that over short 
horizons/holding periods of up to one month:
– Return volatility is time varying (there are periods of tranquility

and turbulence).
– Volatility clustering: large (small) price changes tend to be 

followed by further large (small) changes. 
⇒volatility (risk) is positively correlated.
⇒Non-linear dependence in returns.

Secondly, the unconditional distributions of short-horizon 
returns have fat tails (leptokurtosis). 
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1. Volatility clustering (see handout for Seminars 1 and 
2)
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⇒Non –linear dependence in returns

Correlogram of squared SP500 returns
AutocorrelaPartial Correlation AC  PAC  Q-Stat  Prob

        |**             |**    1 0.207 0.207 130.55 0
        |**             |*      2 0.2 0.164 252.34 0
        |**             |*      3 0.228 0.171 410.19 0
        |*              |*      4 0.18 0.093 508.64 0
        |**             |*      5 0.205 0.115 636.52 0
        |*              |       6 0.155 0.044 709.21 0
        |*              |*      7 0.174 0.072 801.5 0
        |*              |       8 0.152 0.039 871.82 0
        |*              |       9 0.156 0.051 946.1 0
        |*              |       10 0.16 0.05 1024.4 0
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2. Leptokurtic unconditional return distributions
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Mean       0.000412
Median   0.000645
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Std. Dev.   0.010419
Skewness  -0.138163
Kurtosis   6.818984

Jarque-Bera  1852.783
Probability  0.000000
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Volatility clustering
Volatility clustering implies volatility, h(r), is predictable from 

past information:

A common measure of ex-ante
volatility is the conditional variance: 

The ex-post (realized) 
volatility is: 

( )1−Ω= tt fh
Ω includes past volatility and 
other relevant information.

h is the conditional volatility.
This measures ex-ante volatility.
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General framework for modelling expected returns and 
time varying volatility

The following general framework sets out a conditional 
mean equation (to predict expected returns) and a 
conditional variance equation (to predict risk):
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The conditional variance depends on 
information from previous periods (⇒volatility 
clustering).

Mean equation describing equilibrium returns 
(μ could include the conditional variance to 
model a time-varying risk premium – see 
GARCH-M below).

The assumption that the standardized residuals 
(v) are Gaussian ⇒ the residuals (ε) are 
conditionally normally distributed.

This assumption is important for estimation of 
the model (see below).
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ARCH(q) model (Autoregressive Conditional 
Heteroscedasticity)

Different assumptions about Ω generate different models 
of time varying risk.

Suppose                                 then

This is an ARCH(q) model.  A sufficient condition for a 
positive conditional variance (variances cannot be 
negative) is that: 

Engle shared the Nobel Prize in Economics (2003): 
“for methods of analyzing economic time series with time-

varying volatility (ARCH)”

{ }22
11 ,..., qttt −−− =Ω εε

22
110
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The ARCH model was first
proposed by Engle (1982)
in the context of modeling
inflation uncertainty.
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ARCH(q) model
The ARCH(q) model can be written as an AR(q) model in the 

squared residuals

The process is stationary if all the roots of the characteristic
equation lie outside of the unit circle:

The long run/unconditional variance can be found from the 
Wold representation:
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Shocks to volatility (u)

The unconditional variance is finite, positive and 
constant (i.e., homoscedastic) if:

If this condition holds then volatility is a constant
in the long-run.  

If the process is stationary then
shocks to volatility do not persist
⇒the conditional variance returns
eventually to it’s long run level.

This condition must hold if 
the process is stationary.
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GARCH(p,q) (Generalised Autoregressive Conditional 
Heteroscedasticity)
In practice q may need to be set high to capture all the non-

linear dependence in returns.
Also with a lot of lags the non-negativity constraints are 

likely to be violated.
Bollerslev (1986) proposed the GARCH model as a 

parsimonious alternative to ARCH
For GARCH(p,q):

The non-negativity constraints (sufficient restrictions) are: 

Typically p=q=1 is adequate in most empirical applications.
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GARCH(1,1)
The GARCH(1,1) has an ARMA(1,1) representation in the 

squared residuals.  

The unconditional/long-run variance is:
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Volatility is stationary if:

But if

then shocks to volatility have a 
permanent effect:
⇒INTEGRATED GARCH
(IGARCH) process.

Apparent IGARCH behaviour
is found quite often in 
empirical work (see below).

The long-run variance 
converges to a constant
iff: 

111 <+ βα

An implication of IGARCH is that investors should be frequently altering their 
portfolios following shocks to reflect permanent changes in risk.  Since this kind of 
behaviour isn’t observed, IGARCH is incompatible with volatility in the ‘real world’.  
It’s possible that shocks to volatility are just highly persistent if not permanent. 
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Multivariate GARCH (MGARCH)

Generalization of GARCH to systems of n-asset returns.
The conditional volatility is an n×n variance-covariance 

matrix:

A widely used formulation of MGARCH is the BEKK model:
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W, A and B are n×n matrices of parameters.

H is positive definite (because the RHS terms are quadratic forms):
⇒The variances are positive
⇒The off-diagonal terms are symmetric: ( )jiij σσ =
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ARCH-GARCH processes and fat-tail distributions

Another nice feature of ARCH-GARCH models is that they 
generate fat-tailed unconditional returns distributions 
(which are observed empirically – see Seminar 1/2). 

For example an ARCH(1) model produces an unconditional 
return distribution with kurtosis coefficient

(recall the normal distribution has a kurtosis coefficient=3).
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Financial applications of volatility/GARCH modelling

Value at Risk (VaR)
VaR measures the £value of market risk on an 

asset/portfolio of marketable assets.
The maximum the investor can expect to lose in 19/20 days 

= VaR (at a 5% critical value) ⇒ expect to lose more than
VaR in 1/20 days.

In the case of a single asset if the return is normally 
distributed then a 90% confidence interval for the return 
is 

Returns will be less than μ-1.65σ on 1 in every 20 days (5% 
of the time).

Assuming μ≅0 (reasonable for daily returns) then the 
downside risk with 5% probability is 1.65σ

σμ 65.1±

NOT TO BE CONFUSED WITH VAR
(VECTOR-AUTOREGRESSIVE PROCESS) see lecture 9
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Financial applications of volatility/GARCH modelling

VaR
If the value of the asset is £V then:

A forecast of volatility is needed to calculate VaR.
• GARCH provides one option for making this forecast.
• A more commonly used model for VaR volatility is an 

exponentially weighted moving average (EWMA):

ttt VVaR σ65.1£ ×=
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EWMA used widely by practitioners 
e.g., JP Morgan (who recommend 
using λ=0.94)

Weighted average of lagged 
ex-ante/forecasted volatility 
and lagged ex-post/realized 
volatility          (assuming μ=0).
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Weights attached to previous volatility
decline geometrically/exponentially with
the lag. 
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Financial applications of volatility/GARCH modelling
Dynamic hedge ratios
A common risk-management practice is to take opposite positions 

in spot and futures markets (a futures hedge).
The finance director’s job is to determine the optimal hedge ratio: 

θ≡number of futures contracts/number of spot contracts.
The optimal value of θ will minimize the risk on the spot-futures 

portfolios.  Choose θ to minimize the portfolio variance:  
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Simplest estimate of θ is a static hedge:
Regress              
θ=estimated slope coefficient

If the variances/covariances are time-varying
estimate θ using an MGARCH model (n=2) for 
the spot and futures returns.

See Brooks 8.28/8.29 for applications of 
MGARCH to estimating dynamic hedge ratios 
and time-varying CAPM betas.
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ARCH-GARCH Modelling Strategy

Analogous to ARMA modeling (Box-Jenkins 
technique: see lecture 5), ARCH-GARCH 
modeling involves:
1. Identification of a suitable ARCH-GARCH 
model
2. Estimation (using Maximum Likelihood)
3. Testing/diagnostic checking of the model to 
ensure it provides an adequate representation of 
the actual DGP (see Seminar 5).
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Identification of ARCH-GARCH models

First perform a simple ARCH-test (see Appendix) to test for 
ARCH effects.

If there are ARCH effects present, identify a particular ARCH-
GARCH model as follows:

i) The AR and ARMA representations for the squared residuals 
suggest the ACF and PACFs of the squared residuals can be 
used to identify a specific ARCH-GARCH model.
An ARCH(q) model is indicated by:
a) An infinite decay in the ACF of the squared residuals.
b) q spikes in the PACF of the squared residuals.
A GARCH(p,q) model is indicated by an infinite decay in 
both the ACF and the PACF of the squared residuals.

ii) In practice its more common to use information criteria 
such as the Schwarz Criterion to help select a model (see 
lecture 5).

iii) Many authors simply assume a GARCH(1,1) specification.
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Maximum Likelihood (ML) (see Brooks Chp 8, Appendix)

Suppose we have a sample of independent observations        
drawn from a known density

However the parameters are unknown and there is a given 
sample of data.  Therefore re-interpret the joint 
distribution as the likelihood function:
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The probability of observing 
different realizations of y for 
given parameters θ.

The likelihood of observing the 
(given) data for different values of θ

ML estimator found by maximizing
the log-likelihood function

with respect to θ

ML chooses θ to maximize the likelihood 
of observing the sample data. 
ML estimators are:
1) Consistent.
2) Asymptotically efficient.
3) Asymptotically normally distributed.
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ML estimation of ARCH-GARCH model

The ARCH-GARCH likelihood function  involves the 
conditional error density.  If v~NID(0,1) then:

The log likelihood function is:
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The ML estimates of the conditional
mean/variance parameters are the values 
which maximize log L(θ).
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Alternative conditional distributions (see Seminar 5)

What happens if the standardized residuals, v, are 
non-normal (but normality is assumed)?

The ML estimator is still consistent and 
asymptotically normal but the standard errors are 
inconsistent.

Eviews gives an option to estimate ARCH-GARCH 
models with a conditional normal distribution 
but with a var-cov matrix which is robust to non-
normality.  This is known as Quasi-ML (QML)

Alternatively we can choose a different conditional 
distribution.  Eviews allows the choice of a:
i) Student’s t distribution
ii) Generalized error distribution
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Extensions to ARCH-GARCH

Asymmetric GARCH

Standard GARCH models force a symmetric response of 
the conditional variance to shocks (since         
depends on lagged squared residuals).

However, typically bad news (negative shocks) may be 
expected to increase volatility more than good news 
(positive shocks) of the same magnitude.

In the context of equity returns this may be due to 
leverage effects ⇒

Negative shocks result in a fall in the value of the firm 
which increases the debt-equity ratio.

As a result stockholders perceive the firm as being more 
risky ⇒ volatility increases.

2
tσ
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Asymmetric GARCH models : Threshold ARCH (TARCH) 
– Glosten, Jagannathan and Runkle (GJR) model

where: 

When                (good news) the ARCH effect is     .

When                (bad news) the ARCH effect is           .

If leverage effects are present then expect γ>0.
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Asymmetric GARCH models: Exponential GARCH 
(EGARCH) 

The log transformation ensures that the conditional 
variance is positive regardless of the parameter values
⇒ no need for non-negativity constraints.

Also the effect of past shocks is exponential rather than 
quadratic (as in GARCH/TARCH)
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**Asymmetry coefficient has
opposite sign from TARCH**
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The News Impact Curve (NIC) 
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The NIC describes the response of volatility to past shocks:
•In the GARCH model the impact of shocks is symmetric about the origin. 
•In the asymmetric models (TARCH/EGARCH) negative shocks have a bigger
impact on volatility than positive shocks of the same magnitude.

2
tσ

The asymmetry is more pronounced 
for EGARCH than TARCH due to the 
exponential relationship between 
volatility and past shocks 



27Warwick Business School

GARCH-in-Mean (GARCH-M) (see Seminar 5)

CAPM applied to the market  portfolio
gives:

The market return therefore varies
directly with the conditional variance 
(which is usually modelled as a GARCH(1,1) process as above).
This is an example of a GARCH-M model: the conditional 

variance enters the mean equation.
GARCH-M is a model of a time-varying risk premium.
Recall that mistakenly assuming a constant risk premium may 

give rise to rejection of the EMH (see lecture 2)
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Conclusion

GARCH models have assumed a central role in 
empirical finance for modelling time varying 
volatility.

There is a proliferation of variations on the ‘plain 
vanilla’ GARCH model (including models for 
absolute/power returns, multivariate models…)

Numerous applications in finance discussed well 
in Brooks Chp 8 and Cuthbertson & Nitzsche
Chp 29).
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Appendix: A simple test for ARCH effects

ARCH LM Test

Step 1: Estimate the mean equation

Step 2: Regress      on q lagged values of itself 

Test                                    using the LM statistic

Reject the null (no ARCH effects) if the LM stat exceeds the 
5% critical value of the       distribution. 
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ARCH Test example: SP500 returns (In Eviews: 
View/Residual Test/ARCH LM Test…)
ARCH Test:

F-statistic 79.48879     Prob. F(5,3022) 0
Obs*R-squared 351.9462    Prob. Chi-Square(5) 0

Test Equation:
Dependent Variable: RESID 2̂
Method: Least Squares
Date: 02/19/06   Time: 22:23
Sample (adjusted): 1/11/1994 1/11/2006
Included observations: 3028 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 4.78E-05 5.43E-06 8.807116 0
RESID 2̂(-1) 0.119701 0.018071 6.623788 0
RESID 2̂(-2) 0.106659 0.01815 5.876659 0
RESID 2̂(-3) 0.142693 0.018068 7.897765 0
RESID 2̂(-4) 0.076 0.018149 4.187455 0
RESID 2̂(-5) 0.114438 0.018071 6.332504 0

R-squared 0.116231    Mean dependent va 0.000109
Adjusted R-squa 0.114768     S.D. dependent var 0.000262
S.E. of regressio 0.000247    Akaike info criterion -13.77641
Sum squared re 0.000184     Schwarz criterion -13.76449
Log likelihood 20863.48     F-statistic 79.48879
Durbin-Watson s 2.010396     Prob(F-statistic) 0

The test rejects
⇒evidence of ARCH effects
in SP500 returns
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