

Empirical Finance Lecture 7: Analysis of long memory and non-stationary processes: part I.

Module Leader: Dr Stuart Fraser <u>stuart.fraser@wbs.ac.uk</u>

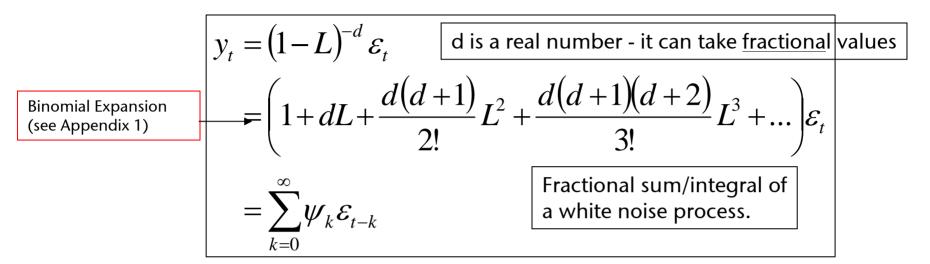
Room D1.18 (Social Studies)

Today

- ELONG Memory Processes (Mills Chp 3.4)
 - E Testing for long memory in the forward premium.
- Analysis of Non-stationary Processes: Part I (Brooks Chp 7.1-7.2)
 - E Testing for autoregressive unit roots ('unit roots') in economic/finance data.
- Seminar 6: Testing for long memory and unit roots in the real exchange rate.

Long memory processes (Mills Chp 3.4)

Example of a long memory process (Fractional White Noise)



The ψ weights (Wold form coefficients) will only decay if d<1

If $d = 1 \Rightarrow y_t = \sum_{k=0}^{\infty} \varepsilon_{t-k}$ (Random walk/Martingale model) \Rightarrow Shocks have a permanent effect on the level of y.

The process will display mean reversion for d < 1.

Long memory processes

However the process is only <u>covariance (weakly) stationary if</u> <u>d<0.5</u>.

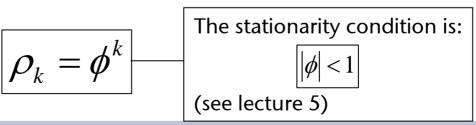
The ACF of FWN is given by:

$$\rho_k = ck^{2d-1}$$

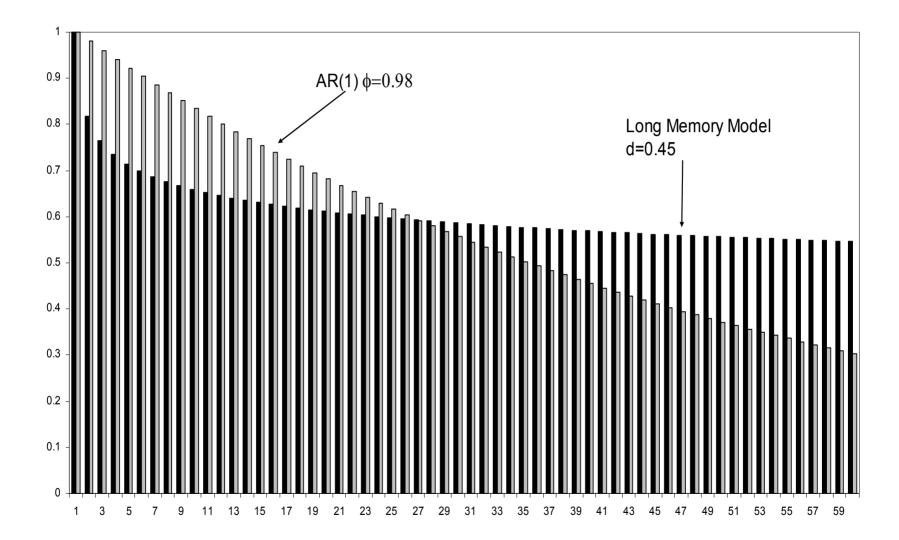
If d<0.5 the ACF decays <u>hyperbolically</u> (slowly) to zero.

- ⇒ Possible to have a FWN process which is both mean reverting (d<1) and non-stationary (d≥0.5)!
- Compare this with the fast <u>geometric/exponential</u> decay of the ACF for stationary ARMA models.

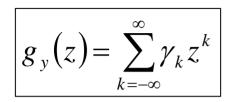
For example the ACF of an AR(1) process is:



ACF of AR(1) and FWN processes (geometric vs hyperbolic decay)



Frequency domain/spectral analysis Auto-covariance Generating Function



Population Spectrum

 $\begin{aligned} f_{y}(\lambda) &= \frac{1}{2\pi} g_{y}(e^{-i\lambda}) \\ &= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_{k} e^{-i\lambda k} \\ &= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_{k} \left[\cos(\lambda k) - i \sin(\lambda k) \right] \\ &= \frac{1}{2\pi} \left\{ \gamma_{0} + 2 \sum_{k=1}^{\infty} \gamma_{k} \cos(\lambda k) \right\} \end{aligned}$

The AGF summarizes the auto-covariances/memory of a time-series: $\gamma_k = \operatorname{cov}(y_t, y_{t-k})$

The AGF is <u>finite</u> if the autocovariances are absolutely summable (roughly this equates to stationary processes).

Time series are made up of cyclical/periodic components with different frequencies λ :

For example... <u>Seasonal components</u> in a timeseries have a <u>high frequency</u> (they repeat over a short period). <u>Long-run trend components</u> have a <u>low</u> frequency (they repeat over very long periods).

To examine the importance of cyclical components at <u>different</u> frequencies we need to analyze the <u>spectrum</u> of the process.

See Appendix 2 for a derivation of the last line.

Frequency domain/spectral analysis

- The population spectrum measures the portion of the variance of y which is attributable to periodic components with frequency λ :
 - Analysis of the spectrum is referred to as <u>frequency domain</u> analysis.
- Analysis of autocovariances/autocorrelations is referred to as <u>time domain</u> analysis.
- The spectrum and autocovariances are simply 'two-sides of the same coin':
- The spectrum is just a function of the autocovariances (and vice-versa): they contain the same information (albeit expressed differently).
- Whether you analyze the spectrum or the autocovariances is simply a matter of context.

Frequency domain/spectral analysis

- λ measures the frequency of the periodic components in radians: it can take any value in the range [- π, π].
 - But the spectrum is symmetric about zero (for real valued time series) so usually we only need to consider the range $[0, \pi]$.

The <u>frequencies</u> are calculated as follows:

$$\lambda_{j} = \frac{2\pi j}{T}, \text{ where}$$

$$j = 1, \dots, \frac{T}{2} \quad (T \text{ even})$$

$$j = 1, \dots, \frac{T-1}{2} \quad (T \text{ odd}).$$

The <u>period</u> of the cycles are given by T/j:

- The <u>shortest</u> cycles repeat every 2 periods (period=T/(T/2)=2).
- The <u>longest</u> cycles repeat every T periods (period=T/1=T)
 - As $T \rightarrow \infty$ these cycles <u>never</u> repeat \Rightarrow <u>long-run trend component</u>.
 - We look at the 'frequency zero' part of the spectrum to analyze the importance of long-run trends in the data.

Spectral examples

1. White noise

0.18

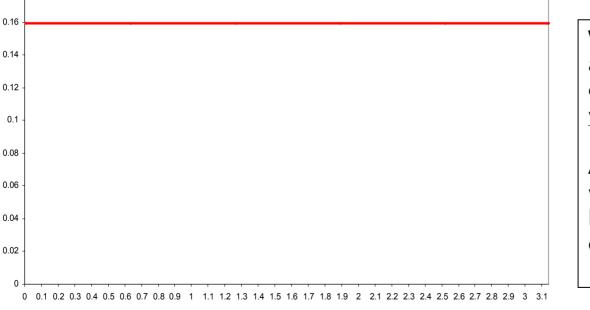
Spectrum

$$\begin{vmatrix} \gamma_0 = \sigma^2 \\ \gamma_k = 0, k > 0 \end{vmatrix}^{-1}$$

$$\begin{aligned} f_{\varepsilon}(\lambda_{j}) &= \frac{1}{2\pi} \left\{ \gamma_{0} + 2\sum_{k=1}^{\infty} \gamma_{k} \cos(\lambda_{j}k) \right\} \\ &\Rightarrow f_{\varepsilon}(\lambda_{j}) &= \frac{\sigma^{2}}{2\pi} \end{aligned}$$

Spectrum of White Noise

<u>The spectrum of white noise is constant</u> – it does not vary with frequency



White noise consists of an infinite number of cyclical components each having <u>equal</u> <u>weight.</u>

A physical example is white light which contains light of all frequencies in equal contribution.

Frequency

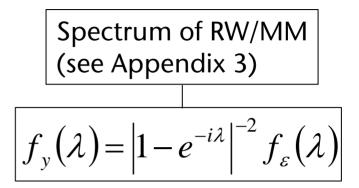
Spectral examples

2. Random Walk/Martingale

$$y_{t} = y_{t-1} + \varepsilon_{t}$$

$$\Rightarrow y_{t} = (1 - L)^{-1} \varepsilon_{t}$$

Spectrum of a Random Walk (d=1)



As the frequency tends to zero the spectrum tends to infinity:

$$\lim_{\lambda \to 0} f_{y}(\lambda) = \infty$$

⇒the RW/MM is dominated by its frequency zero (long run trend) component.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 31

1800000000

16000000000

14000000000

12000000000

10000000000

8000000000

6000000000

400000000

2000000000

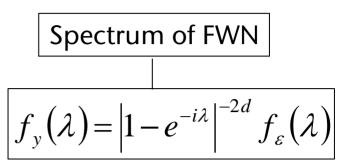
-2000000000

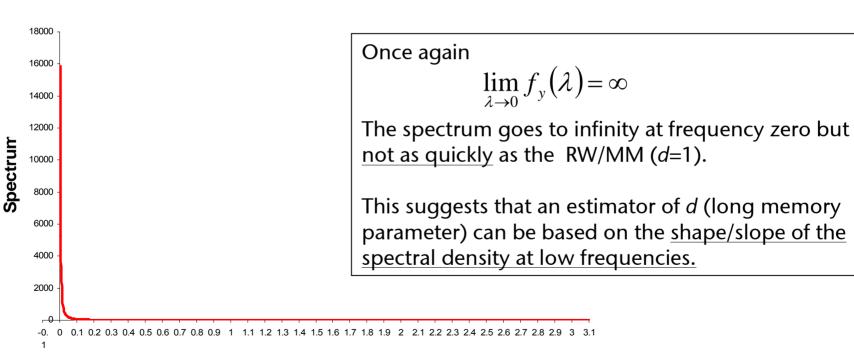
Spectrum

Spectral examples

3. Fractional White Noise:

$$y_t = \left(1 - L\right)^{-d} \varepsilon_t$$





Spectrum of FWN (d=0.4)

Frequency

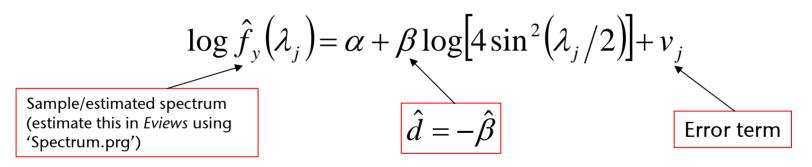
Testing for long memory (see Mills Chp 3.4)

<u>Geweke and Porter-Hudak (GPH) Estimator</u> Based on the observation that

$$f_{y}(\lambda) = \left|1 - e^{-i\lambda}\right|^{-2d} f_{\varepsilon}(\lambda)$$

$$\Rightarrow \log f_{y}(\lambda) = \log f_{\varepsilon}(\lambda) - d \log[4 \sin^{2}(\lambda/2)]$$
see Appendix 4

GPH suggested a frequency domain regression



The GPH estimator \hat{d} is consistent and asymptotically normal for d<0.5 (i.e., assuming stationarity)

 $=4\sin^2(\lambda/2)^{-d}$

GPH test for long memory

Need to restrict the frequencies used in estimation to low frequencies – otherwise estimate of *d* will be biased by higher frequency cycles in the series.

Therefore need to choose a cut-off number of frequencies g(T) in the GPH regression.

$$\lambda_j = \frac{2\pi j}{T}, \quad j = 1, \dots, g(T)$$

such that:

$$\lim_{T \to \infty} g(T) = \infty$$

$$\lim_{T \to \infty} g(T)/T = 0$$

A common choice for g(T) is:

$$g(T) = T^{\mu}, \quad 0 < \mu < 1$$

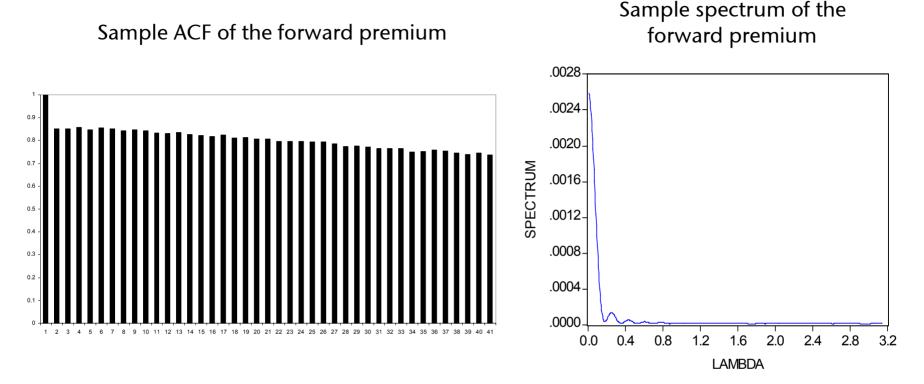
$$\mu = 0.5 \text{ is typically used.}$$

$$\mathsf{Bandwidth} = \lambda_{g(T)} \longrightarrow 0$$

 \Rightarrow estimator becomes increasingly 'tuned' to frequency zero (long run component) as *T* increases.

 \Rightarrow Number of frequencies increases with T

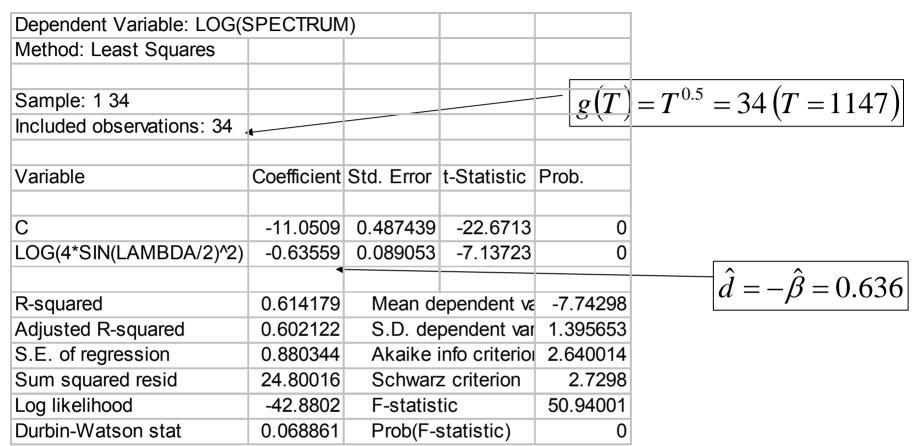
Application: Testing for long memory in the £/\$ forward premium (see Seminar 4)



There is evidence for long memory in the forward premium in both the <u>time domain</u> (sample ACF) and <u>frequency domain</u> (sample spectrum). The analysis in Seminar 4 suggested the presence of a <u>unit root</u> in the forward premium (\Rightarrow non-stationary process) - <u>incompatible</u> with finance theory.

Warwick Business School

GPH estimates of the long memory parameter



Based on a 95% confidence interval: $\hat{d} \pm 1.96\hat{\sigma}_d$ the long memory parameter lies between 0.461 and 0.810 \Rightarrow <u>cannot reject the</u> <u>hypothesis that the forward premium is stationary (d<0.5).</u>

Auto-regressive Fractionally Integrated Moving Average (ARFIMA) processes

More generally a process is ARFIMA if:

$$\phi(L)(1-L)^d y_t = \theta(L)\varepsilon_t$$

- The process is <u>stationary if d<0.5</u> (and all the remaining roots of the AR characteristic polynomial lie outside of the unit circle: see Lecture 5).
- The process is <u>invertible if d>-1</u> (and all the remaining roots of the MA characteristic polynomial lie outside of the unit circle: see Lecture 5).
- ARFIMA can model a rich variety of <u>short-run</u> and <u>long-run</u> behaviour of a time-series.
- They are now used quite often in empirical finance along with standard ARMA models (see Baillie, 1996, for applications in finance).

Non-stationary processes (Analysis of Price Series)

So far our analysis has involved weakly stationary processes:

- Classical assumption is that d=0 e.g., CLRM and stationary ARMA models.
- More general assumption is $d < 0.5 \Rightarrow$ stationary long memory models.
- What's different about models involving non-stationary processes?
- 1. Shocks have permanent effects on the levels of nonstationary series.
 - No tendency to revert to mean
 - Series has infinite variance.
 - Non-decay in ACF
- 2. Test statistics follow non-standard distributions
 - Use of t and F distributions is invalid for inferences.
- 3. <u>Independent</u> non-stationary series can <u>appear</u> to be related (<u>spurious regression problem</u>):
 - Important to be able to distinguish spurious relationships from meaningful relationships (⇒tests for 'cointegration' see lectures 8/9).

Two types of non-stationarity: TS vs DS

Traditionally (pre-1982) trends in economic/financial data were modelled using a deterministic trend function

For example...

$$y_t = f(t) + \mathcal{E}_t$$

$$f(t) = \alpha + \beta t, \text{ linear trend}$$

$$f(t) = \alpha + \beta t + \gamma t^2, \text{ quadratic trend}$$

The mean is time dependent (\Rightarrow non-stationarity) but the variance is constant: $var(y_t) = var(\varepsilon_t) = \sigma^2$

This series can be made stationary by regressing y on a trend function ⇒TREND STATIONARY TS (DETERMINISTIC TREND) PROCESS

A random walk with drift <u>also</u> has a trend:

However the model requires to be first differenced to be made

stationary

$$(1-L)y_t = \mu + \varepsilon_t$$

$$y_{t} = \mu + y_{t-1} + \varepsilon_{t}$$

$$y_{t} = \mu + (\mu + y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$\dots$$

$$y_{t} = y_{0} + \mu t + \sum_{k=0}^{t-1} \varepsilon_{t-k}$$

 \Rightarrow DIFFERENCE STATIONARY DS (STOCHASTIC TREND) PROCESS

Warwick Business School

The order of integration of a process

- A DS process is sometimes called 'I(1)' 'integrated of order one'.
- The '1' in I(1) refers to the number of unit roots in the AR polynomial of the process.
- A TS process is I(0) because it has no unit roots in the AR polynomial.
- In general a process is I(d) if it has d unit roots in its AR polynomial.
- Differencing an I(d) process d times yields a process with no unit roots (an I(0) process).
- Differencing an I(d) process d times is therefore <u>sufficient</u> to yield a stationary process (but not <u>necessary</u> because stationarity implies d<0.5 <u>not</u> d=0).

Testing for (integer) unit roots: Dickey Fuller tests

We've carried out <u>informal</u> tests for non-stationarity based on visual inspection of the ACF:

 \Rightarrow The ACF does not decay if the series is non-stationary.

The requisite statistical theory for <u>formal</u> testing of AR unit roots was developed by Dickey and Fuller (1979) (DF).

DF took a simple AR(1) model:

$$\begin{aligned} y_t &= \phi y_{t-1} + \varepsilon_t \\ or \\ \Delta y_t &= \rho y_{t-1} + \varepsilon_t, \quad \rho = \phi - 1 \end{aligned}$$

...and derived the distribution

for the *t*-test of: $H_0: \rho = 0$ (the series is nonstationary : I(1))

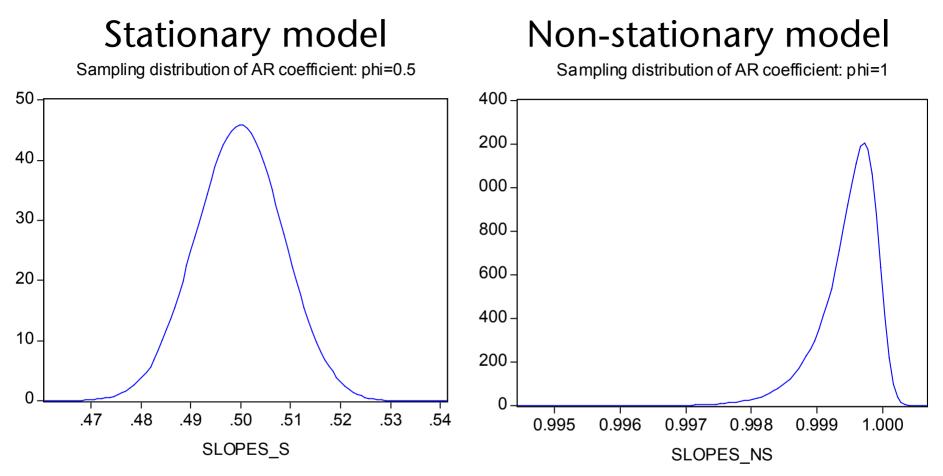
versus

$$H_1: \rho < 0$$
 (the series is stationary: $I(0)$)

$$DF \ \tau \operatorname{-test} (tau - test) = \frac{\hat{\rho}}{se(\hat{\rho})}$$

This test does not follow the usual t-distribution See next slide

Sampling distributions of AR(1) parameter in two instances



Accordingly the DF τ distribution has a <u>fatter left tail</u> than the usual *t*-distribution: \Rightarrow the <u>magnitude</u> of the DF critical values are <u>bigger</u> compared to *t* critical values For example, a *t*-test with a <u>nominal</u> significance level of 5% would reject a <u>true</u> unit root null <u>more</u> than 5% of the time.

Dickey Fuller Tests

The test is carried out using one of 3 test regressions.

1. $\Delta y_t = \rho y_{t-1} + \varepsilon_t$ Use if the series has a zero mean under H_1 . 2. $\Delta y_t = \alpha + \rho y_{t-1} + \varepsilon_t$ Use if the series has a non - zero mean under H_1 . 3. $\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \varepsilon_t$ Use if the series is trend stationary under H_1 .

Critical values for these tests are reported in Brooks Table A2.7. *Eviews* reports the *p*-values for these tests.

- You still need to make an informed decision about which regression to run (see seminar 6):
- Omitting relevant deterministic terms will lead to a test based on the wrong distribution (the test will have the wrong size \Rightarrow can't rely on the *p*-values).
- Including irrelevant terms will reduce the power of the test (less likely to reject the null when it's false: see power problems below).

Dickey Fuller Tests

In principle time series can have <u>more than one unit root</u> <u>Testing strategy</u>

Starting with y, keep testing successive differences of y until the <u>null of a unit root is rejected</u>:

$$y, \Delta y, \Delta^2 y, \dots, \Delta^d y$$

If you reject the null for the dth difference then the series has d (integer) unit roots (i.e., <u>the series is dth</u> <u>difference stationary</u>).

In practice economic/financial time series <u>typically</u> have only one unit root (1st difference stationary) and <u>rarely</u> have more than 2 unit roots (2nd difference stationary).

Augmented Dickey Fuller (ADF) Test

- If the series is AR(p), p>1, then the test equation needs to be modified.
- An ADF test adds in lagged differences of the series to take into account higher order AR terms.

Example: Suppose y is AR(2) The test equation involves one lagged difference term to 'mop up' the higher order dependencies in the series.

$$y_{t} = \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \mathcal{E}_{t}$$

$$\Rightarrow \Delta y_{t} = (\phi_{1} - 1)y_{t-1} + \phi_{2}y_{t-2} + \mathcal{E}_{t}$$

$$\Rightarrow \Delta y_{t} = (\phi_{1} + \phi_{2} - 1)y_{t-1} - \phi_{2}\Delta y_{t-1} + \mathcal{E}_{t}$$
Unit root $\Rightarrow \phi_{1} + \phi_{2} = 1$
ADF term

In general, if the series is AR(p) (and the alternative is trend stationarity) the ADF regression is

Eviews selects lag length automatically using an information criterion e.g., Schwarz Criterion

$$\Delta y_{t} = \alpha + \beta t + \rho y_{t-1} + \sum_{j=1}^{p-1} \delta_{j} \Delta y_{t-j} + \varepsilon_{t}$$

Problems with unit root tests

- ADF (and unit root tests in general) have <u>low power</u>. Unit root tests can be 'tricked' into suggesting there are unit roots (when there are none) if (for example):
- There are <u>deterministic</u> structural breaks in the data.
 - These breaks mimic permanent <u>random</u> shocks which 'fools' the test into implying there is a unit root.
- The data have long memory (see e.g., forward-premium example).
- The AR parameter φ is simply <u>close</u> to one (if not <u>equal</u> to one)
- With short spans of data shocks which are simply very persistent ('near' unit roots e.g., long memory models or AR with ϕ close to one) can <u>appear</u> permanent.
- When testing the long-run behaviour of data choose a sample with a <u>long span</u> (at least 10 years).
 - When testing long-run behaviour <u>increasing the sampling</u> <u>frequency of the data won't help</u> if the span is too short.

Conclusions

Baillie (1996) provides a well written review of long memory models with applications in finance:

- His own estimate of the long memory parameter for the £-\$ forward premium on a different sample (Jan 1974-December 1991) is *d*=0.55.
- He also discusses extensions to long memory volatility models (Fractionally Integrated GARCH – FIGARCH).
- Testing for unit roots forms an important preliminary analysis when analyzing price series.
- Typically we want to go on and test if there is a long run relationship involving the series.
- ⇒Analysis of Non-stationary Processes: Part II (Testing for cointegration) next lecture.

References

Baillie (1996), Long memory processes and fractional integration in econometrics, Journal of Econometrics, 73, 5-59 (A very good review article on long memory processes – also discusses applications in finance). Brooks (2002), Introductory econometrics for finance, CUP: Cambridge. Chp 7.1 and 7.2** (Unit root testing) Dickey and Fuller (1979), Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431.

Mills (1999), The econometric modelling of financial time series, CUP: Cambridge. Chp 3.4** (Long memory processes)

**Key references

Appendix 1

The binomial expansion of $(1-L)^d$ for any real d>-1 is given by

$$\left[(1-L)^d = 1 - dL + \frac{d(d-1)}{2!} L^2 - \frac{d(d-1)(d-2)}{3!} L^3 + \dots \right]$$

For d = -1

$$(1-L)^d = 1 + L + L^2 + L^3 + \dots$$

This is a <u>non-convergent</u> sum of an infinite geometric series (used e.g., in the MA(∞) form of a random walk).

For d=1

$$\left(1-L\right)^d = 1-L$$

which is simply the first difference operator.

Appendix 2 (for your information only - not examinable)

For a stationary process $\gamma_k = \gamma_{-k}$

$$\Rightarrow \sum_{k=-\infty}^{\infty} \gamma_k \left[\cos(\lambda k) - i \sin(\lambda k) \right]$$
$$= \gamma_0 \left[\cos(0) - i \sin(0) \right] + \sum_{k=1}^{\infty} \gamma_k \left[\cos(\lambda k) + \cos(-\lambda k) - i \sin(\lambda k) - i \sin(-\lambda k) \right]$$

$$=\gamma_0+2\sum_{k=1}^{\infty}\gamma_k\cos(\lambda k)$$

Using: $\cos(0) = 1$ $\sin(0) = 0$ $\sin(-\lambda k) = -\sin(\lambda k)$ $\cos(-\lambda k) = \cos(\lambda k)$

Appendix 3: Spectrum of an AR(1) process (for your information only – <u>not examinable</u>)

For an AR(1) process $\gamma_k = \phi^k \sigma^2 (1 + \phi^2 + \phi^4 + ...) = \phi^k \sigma^2 / (1 - \phi^2)$ (see lecture 5). Also $\gamma_k = \gamma_{-k}$. Therefore the Autocovariance Generating Function is given by:

$$\overline{y}(z) = \frac{\sigma^2}{1 - \phi^2} \sum_{k=-\infty}^{\infty} \phi^{|k|} z^k$$

$$= \frac{\sigma^2}{1 - \phi^2} \left(\sum_{k=-\infty}^{0} \phi^{|k|} z^k + \sum_{k=0}^{\infty} \phi^k z^k - 1 \right)$$

$$= \frac{\sigma^2}{1 - \phi^2} \left(\frac{1}{1 - \phi z^{-1}} + \frac{1}{1 - \phi z} - 1 \right)$$

$$= \frac{\sigma^2}{1 - \phi^2} \left\{ \frac{1 - \phi z + (1 - \phi z^{-1}) - (1 - \phi z)(1 - \phi z^{-1})}{(1 - \phi z)(1 - \phi z^{-1})} \right\}$$

$$= \frac{\sigma^2}{1 - \phi^2} \frac{1 - \phi^2}{(1 - \phi z)(1 - \phi z^{-1})}$$

$$= \frac{\sigma^2}{(1 - \phi z)(1 - \phi z^{-1})}$$

Accordingly the spectrum $f_{y}(\lambda) = (2\pi)^{-1} g_{y}(e^{-i\lambda})$ is given by

$$f_{y}(\lambda) = \frac{1}{2\pi} \frac{\sigma^{2}}{\left(1 - \phi e^{-i\lambda}\right)\left(1 - \phi e^{-i\lambda}\right)}$$
$$= \left|1 - \phi e^{-i\lambda}\right|^{-2} f_{\varepsilon}(\lambda)$$

The last line follows since the modulus of a complex number $|h - iv| = \sqrt{h^2 + v^2}$ (by Pythagoras' Theorem) so $|h - iv|^2 = h^2 + v^2 = (h - iv)(h + iv)$. Also $f_{\varepsilon}(\lambda) = \sigma^2/2\pi$.

g

Appendix 4 (not examinable)

In Appendix 3 it was shown

$$\left| -e^{-i\lambda} \right|^{2} = \left(1 - e^{-i\lambda} \right) \left(1 - e^{i\lambda} \right)$$
$$= 2 - \left(e^{-i\lambda} + e^{i\lambda} \right)$$

We can expand this quantity using three trigonometric identities

1.
$$e^{\pm i\lambda} \equiv \cos \lambda \pm i \sin \lambda$$

2. $\cos (2\lambda) \equiv \cos^2 \lambda - \sin^2 \lambda$

$$3. \sin^2 \lambda + \cos^2 \lambda = 1$$

Using the first identity

$$e^{-i\lambda} + e^{i\lambda} = 2\cos \lambda$$

Using the second identity

$$\cos \lambda = \cos^{-2} (\lambda/2) - \sin^{-2} (\lambda/2)$$

Using the third identity

$$\cos^{2}(\lambda/2) = 1 - \sin^{2}(\lambda/2)$$

Therefore (using each of these results in turn)

$$|1 - e^{-i\lambda}|^2 = 2 - 2 \cos \lambda$$

= 2 - 2 (cos² (\lambda /2) - sin² (\lambda /2))
= 2 - 2 (1 - 2 sin² (\lambda /2))
= 4 sin² (\lambda /2)

Finally

$$\left|1 - e^{-i\lambda}\right|^{-2d} = \left(\left|1 - e^{-i\lambda}\right|^{2}\right)^{-d}$$
$$= \left[4\sin^{-2}\left(\frac{\lambda}{2}\right)\right]^{-d}$$