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Today

Long Memory Processes (Mills Chp 3.4)
Testing for long memory in the forward premium.

Analysis of Non-stationary Processes: Part I 
(Brooks Chp 7.1-7.2)

Testing for autoregressive unit roots (‘unit roots’) in 
economic/finance data.

Seminar 6: Testing for long memory and unit 
roots in the real exchange rate.
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Long memory processes (Mills Chp 3.4)
Example of a long memory process (Fractional White Noise)

The ψ weights (Wold form coefficients) will only decay if d<1

The process will display mean reversion for d<1.

Binomial Expansion 
(see Appendix 1)
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d is a real number - it can take fractional values
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Long memory processes

However the process is only covariance (weakly) stationary if 
d<0.5.

The ACF of FWN is given by:

If d<0.5 the ACF decays hyperbolically (slowly) to zero.
⇒Possible to have a FWN process which is both mean reverting (d<1) 

and non-stationary (d≥0.5)!

Compare this with the fast geometric/exponential decay of 
the ACF for stationary ARMA models.

For example the ACF of an AR(1) process is: 

12 −= d
k ckρ

k
k φρ =

The stationarity condition is:

(see lecture 5)

1<φ
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ACF of AR(1) and FWN processes (geometric vs
hyperbolic decay)
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Frequency domain/spectral analysis
Auto-covariance Generating Function

Population Spectrum
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The AGF summarizes the auto-covariances/memory
of a time-series:

The AGF is finite if the autocovariances are absolutely 
summable (roughly this equates to stationary processes).

( )kttk yy −= ,covγ

See Appendix 2 for a derivation of 
the last line.

Time series are made up of  cyclical/periodic 
components with different frequencies λ:

For example… Seasonal components in a time-
series have a high frequency (they repeat over a 
short period).
Long-run trend components have a low 
frequency (they repeat over very long periods).

To examine the importance of cyclical 
components at different frequencies we need to 
analyze the spectrum of the process.
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Frequency domain/spectral analysis

The population spectrum measures the portion of the 
variance of y which is attributable to periodic 
components with frequency λ: 
– Analysis of the spectrum is referred to as frequency domain 

analysis.

Analysis of autocovariances/autocorrelations is referred to 
as time domain analysis.

The spectrum and autocovariances are simply ‘two-sides of 
the same coin’:

• The spectrum is just a function of the autocovariances
(and vice-versa): they contain the same information 
(albeit expressed differently).

• Whether you analyze the spectrum or the 
autocovariances is simply a matter of context. 
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Frequency domain/spectral analysis
λ measures the frequency of the periodic components in 

radians: it can take any value in the range [- π, π] .  
• But the spectrum is symmetric about zero (for real valued time 

series) so usually we only need to consider the range [0, π] .

The frequencies are calculated as follows:

The period of the cycles are given by T/j:
• The shortest cycles repeat every 2 periods 

(period=T/(T/2)=2).
• The longest cycles repeat every T periods (period=T/1=T)

• As T→∞ these cycles never repeat ⇒ long-run trend component.
• We look at the ‘frequency zero’ part of the spectrum to analyze the 

importance of long-run trends in the data.  
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Spectral examples
1. White noise
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The spectrum of white noise is constant –
it does not vary with frequency

White noise consists of 
an infinite number of cyclical
components each having equal
weight.

A physical example is 
white light which contains 
light of all frequencies in 
equal contribution.

Spectrum of White Noise
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Spectral examples

2. Random Walk/Martingale

( )    1 1
1

tt

ttt

Ly

yy

ε

ε
−

−

−=⇒

+=
( ) ( )λλ ε

λ fef i
y

2
1

−−−=

( ) ∞=
→

λ
λ yf

0
lim  

As the frequency tends to zero the 
spectrum tends to infinity:

⇒the RW/MM is dominated by
its frequency zero (long run trend)
component.

Spectrum of a Random Walk (d=1)
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Spectral examples

3. Fractional White Noise:
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Once again

The spectrum goes to infinity at frequency zero but
not as quickly as the  RW/MM (d=1).

This suggests that an estimator of d (long memory 
parameter) can be based on the shape/slope of the 
spectral density at low frequencies.

Spectrum of FWN (d=0.4)
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Testing for long memory (see Mills Chp 3.4)

Geweke and Porter-Hudak (GPH) Estimator
Based on the observation that

GPH suggested a frequency domain regression

The GPH estimator      is consistent and asymptotically 
normal for d<0.5 (i.e., assuming stationarity)
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GPH test for long memory
Need to restrict the frequencies used in estimation to 

low frequencies – otherwise estimate of d will be 
biased by higher frequency cycles in the series.

Therefore need to choose a cut-off number of 
frequencies g(T) in the GPH regression.

such that:

A common choice for g(T) is:
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⇒ Number of frequencies increases with T

Bandwidth =                                        

⇒ estimator becomes increasingly 
‘tuned’ to frequency zero (long run 
component) as T increases.

( ) 10   , <<= μμTTg

( ) 0→Tgλ

μ=0.5 is typically used.
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Application: Testing for long memory in the £/$ 
forward premium (see Seminar 4)
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There is evidence for long memory in the forward premium
in both the time domain (sample ACF) and frequency domain
(sample spectrum).  The analysis in Seminar 4 suggested the
presence of a unit root in the forward premium 
(⇒non-stationary process) - incompatible with finance theory.

Sample ACF of the forward premium
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GPH estimates of the long memory parameter

( ) ( )1147 345.0 === TTTg

636.0ˆˆ =−= βd

Based on a 95% confidence interval:                 the long memory
parameter lies between 0.461 and 0.810 ⇒ cannot reject the 
hypothesis that the forward premium is stationary (d<0.5).

dd σ̂96.1ˆ±

Dependent Variable: LOG(SPECTRUM)
Method: Least Squares

Sample: 1 34
Included observations: 34

Variable Coefficient Std. Error t-Statistic Prob.  

C -11.0509 0.487439 -22.6713 0
LOG(4*SIN(LAMBDA/2) 2̂) -0.63559 0.089053 -7.13723 0

R-squared 0.614179    Mean dependent va -7.74298
Adjusted R-squared 0.602122    S.D. dependent var 1.395653
S.E. of regression 0.880344    Akaike info criterion 2.640014
Sum squared resid 24.80016     Schwarz criterion 2.7298
Log likelihood -42.8802     F-statistic 50.94001
Durbin-Watson stat 0.068861     Prob(F-statistic) 0
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Auto-regressive Fractionally Integrated Moving 
Average (ARFIMA) processes

More generally a process is ARFIMA if:

The process is stationary if d<0.5 (and all the remaining 
roots of the AR characteristic polynomial lie outside of the 
unit circle: see Lecture 5). 

The process is invertible if d>-1 (and all the remaining roots 
of the MA characteristic polynomial lie outside of the unit 
circle: see Lecture 5). 

ARFIMA can model a rich variety of short-run and long-run
behaviour of a time-series.

They are now used quite often in empirical finance along 
with standard ARMA models (see Baillie, 1996, for 
applications in finance).

( )( ) ( ) tt
d LyLL εθφ =−1
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Non-stationary processes (Analysis of Price Series) 

So far our analysis has involved weakly stationary processes:
• Classical assumption is that d=0 e.g., CLRM and stationary ARMA 

models.
• More general assumption is d<0.5 ⇒stationary long memory 

models.
What’s different about models involving non-stationary 

processes? 
1. Shocks have permanent effects on the levels of non-

stationary series.
• No tendency to revert to mean
• Series has infinite variance.
• Non-decay in ACF

2. Test statistics follow non-standard distributions
• Use of t and F distributions is invalid for inferences.

3. Independent non-stationary series can appear to be related  
(spurious regression problem):
• Important to be able to distinguish spurious relationships from 

meaningful relationships (⇒tests for ‘cointegration’ see lectures 
8/9).
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Two types of non-stationarity: TS vs DS
Traditionally (pre-1982) trends in economic/financial data were modelled

using a deterministic trend function

The mean is time dependent (⇒non-stationarity) but the variance is constant:  

This series can be made stationary by regressing y on a trend function 
⇒TREND STATIONARY TS (DETERMINISTIC TREND) PROCESS

A random walk with drift also has a trend:       

However the model requires to be
first differenced to be made 
stationary 

⇒DIFFERENCE STATIONARY DS (STOCHASTIC TREND) PROCESS
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The order of integration of a process

A DS process is sometimes called ‘I(1)’ – ‘integrated of 
order one’.

The ‘1’ in I(1) refers to the number of unit roots in the AR 
polynomial of the process.

A TS process is I(0) because it has no unit roots in the AR 
polynomial.

In general a process is I(d) if it has d unit roots in its AR 
polynomial.

Differencing an I(d) process d times yields a process with 
no unit roots (an I(0) process).

Differencing an I(d) process d times is therefore sufficient to 
yield a stationary process (but not necessary because 
stationarity implies d<0.5 not d=0).
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Testing for (integer) unit roots: Dickey Fuller tests

We’ve carried out informal tests for non-stationarity based 
on visual inspection of the ACF:
⇒The ACF does not decay if the series is non-stationary.

The requisite statistical theory for formal testing of AR unit 
roots was developed by Dickey and Fuller (1979) (DF).

DF took a simple AR(1) model:        

…and derived the distribution
for the t-test of:  
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**This test does not follow the 
usual t-distribution**

See next slide
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Sampling distributions of AR(1) parameter in two instances
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Accordingly the DF τ distribution has a fatter left tail than the usual t-distribution:
⇒the magnitude of the DF critical values are bigger compared to  t critical values
For example, a t-test with a nominal significance level of 5% would reject a true unit 
root null more than 5% of the time.
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Dickey Fuller Tests
The test is carried out using one of 3 test regressions.

Critical values for these tests are reported in Brooks Table 
A2.7.  Eviews reports the p-values for these tests.

You still need to make an informed decision about which 
regression to run (see seminar 6):   

• Omitting relevant deterministic terms will lead to a test 
based on the wrong distribution (the test will have the 
wrong size ⇒ can’t rely on the p-values).

• Including irrelevant terms will reduce the power of the 
test (less likely to reject the null when it’s false: see 
power problems below). 
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Dickey Fuller Tests

In principle time series can have more than one unit root
Testing strategy
Starting with y, keep testing successive differences of y 

until the null of a unit root is rejected:

If you reject the null for the dth difference then the series 
has d (integer) unit roots (i.e., the series is dth

difference stationary).
In practice economic/financial time series typically have 

only one unit root (1st difference stationary) and rarely
have more than 2 unit roots (2nd difference stationary).

yyyy dΔΔΔ ,...,,, 2
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Augmented Dickey Fuller (ADF) Test

If the series is AR(p), p>1, then the test equation needs to be 
modified.

An ADF test adds in lagged differences of the series to take 
into account higher order AR terms.

Example: Suppose y is AR(2)⇒
The test equation involves
one lagged difference term
to ‘mop up’ the higher order
dependencies in the series.
In general, if the series is AR(p) (and the alternative is trend 

stationarity) the ADF regression is 
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Eviews selects lag length automatically 
using an information criterion 
e.g., Schwarz Criterion
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Problems with unit root tests

ADF (and unit root tests in general) have low power.  Unit 
root tests can be ‘tricked’ into suggesting there are unit 
roots (when there are none) if (for example):

• There are deterministic structural breaks in the data.
– These breaks mimic permanent random shocks which ‘fools’ the 

test into implying there is a unit root.
• The data have long memory (see e.g., forward-premium 

example).
• The AR parameter φ is simply close to one (if not equal to 

one)
With short spans of data shocks which are simply very 

persistent (‘near’ unit roots e.g., long memory models or 
AR with φ close to one) can appear permanent.

When testing the long-run behaviour of data choose a 
sample with a long span (at least 10 years).
• When testing long-run behaviour increasing the sampling 

frequency of the data won’t help if the span is too short.  
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Conclusions

Baillie (1996) provides a well written review of long memory 
models with applications in finance:
– His own estimate of the long memory parameter for the £-$ 

forward premium on a different sample (Jan 1974-December 
1991) is d=0.55. 

– He also discusses extensions to long memory volatility models 
(Fractionally Integrated GARCH – FIGARCH).

Testing for unit roots forms an important preliminary 
analysis when analyzing price series.

Typically we want to go on and test if there is a long run 
relationship involving the series.

⇒Analysis of Non-stationary Processes: Part II (Testing for 
cointegration) – next lecture. 
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Appendix 1

The binomial expansion of               for any real d>−1 is 
given by

For d= −1 

This is a non-convergent sum of an infinite geometric series 
(used e.g., in the MA(∞) form of a random walk). 

For d=1

which is simply the first difference operator.
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Appendix 2 (for your information only - not 
examinable)
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Appendix 3: Spectrum of an AR(1) process (for your 
information only – not examinable) 
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Accordingly the spectrum ( ) ( ) ( )λπλ i
yy egf −−= 12  is given by 

( ) ( )( )
( )λφ

φφ
σ

π
λ

ε
λ

λλ

fe

ee
f

i

iiy

2

2

1

112
1

−−

−

−=

−−
=

 

The last line follows since the modulus of a complex 

number 22 vhivh +=− (by Pythagoras’ Theorem) 

so ( )( )ivhivhvhivh +−=+=− 222
.  Also ( ) πσλε 22=f . 
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Appendix 4 (not examinable) 
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We can expand this quantity using three trigonometric identities
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