英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

量子密码通信分析 [3]

论文作者:www.51lunwen.org论文属性:学术文章 Scholarship Essay登出时间:2016-04-30编辑:lily点击率:11601

论文字数:3760论文编号:org201604261519363578语种:英语 English地区:美国价格:免费论文

关键词:量子密码学信息安全量子密钥

摘要:本文专注于量子密钥分配和位承诺协议,特别讨论它们的安全性,首先回顾了经典密码学的相关内容,随后对量子密码学进行介绍,并说明其应用领域及存在的问题,最后得出结论并对前景进行展望。

t m= m1m2. . .mn be a given message of length n, which Alice wishes to encrypt. For each plaintext letter mi, where 1 a‰¤ ia‰¤ n, Alice adds the plaintext numbers to the key numbers. The result is taken modulo 30. For example, the last letter of the plaintext from Fig.3.2, “D,” is encoded by “m12=03.” The corresponding key is “m12= 28,” so we have c12= 3 + 28 = 31. Since 31 a‰¡ 1 mod 30, our plaintext letter “D” is encrypted as “B.”

Decryption works similarly by subtracting, character by character, the key letters from the corresponding cipher text letters. So the encryption and decryption can be written as respectively ci= (mi+ ki) mod 30 and mi= (ciaˆ’ ki) mod 30, 1 a‰¤ i a‰¤ n.

mONE-TIMEPADM141304281906120426150003
k061302011406071805132826
C202606290313192201111301
cUG.DNTWBLNB

Fig.3.2 Encryption and decryption example for the one time pad

3.3. PROTOCOLS OF QKD
BB84 (and DARPA Project) - uses polarization of photons to encode the bits of information - relies on “uncertainty” to keep Eve from learning the secret key.
Ekert - uses entangled photon states to encode the bits - relies on the fact that the information defining the key only 'comes into being' after measurements performed by Alice and Bob.
3.4. LIMITATIONS
Cryptographic technology in use today relies on the hardness of certain mathematical problems. Classical cryptography faces the following two problems which are as follows.
The security of many classical cryptosystems is based on the hardness of problems such as integer factoring or the discrete logarithm problem. But since these problems typically are not probablyhard, the corresponding cryptosystems are potentially insecure.
The theory of quantum computation has yielded new methods to tackle these mathematical problems in a much more efficient way. Although there are still numerous challenges to overcome before a working quantum computer of sufficient power can be built, in theory many classical ciphers might be broken by such a powerful machine.
However, while quantum computation seems to be a severe challenge to classical cryptography in a possibly not so distant future, at the same time it offers new possibilities to build encryption methods that are safe even against attacks performed by means of a quantum computer. Quantum cryptography extends the power of classical cryptography by protecting the secrecy of messages using the physical laws of quantum mechanics.

4、量子密码学——4. QUANTUM CRYPTOGRAPHY
Quantum Cryptography, or Quantum Key Distribution (QKD), uses quantum mechanics to guarantee secure communication. It enables two parties to produce a shared random bit string known only to them, which can be used as a key to encrypt and decrypt messages. An important and unique property of quantum cryptography is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This result from a fundamental part of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superposition's or quantum entanglement and transmitting information in quantum states, a communication system can be implemented which detects eavesdropping. If 论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。
英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非