英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

脸部识别技术及运用

论文作者:www.51lunwen.org论文属性:职称论文 Scholarship Papers登出时间:2015-03-27编辑:Cinderella点击率:3370

论文字数:2940论文编号:org201503261537485917语种:英语论文 English地区:英国价格:免费论文

关键词:Face detectionface tracking人脸识别技术

摘要:本文对人脸识别技术的种类、操作原理和运用进行了详细介绍。尤其是脸部识别、脸部追踪和面部表情识别等问题上的运用成果展示。

人脸侦测技术广泛的运用范围,吸引了大批研究者。在给出一张脸相之后,如果需要的话,人脸侦测技术可以对人脸进行局部化监测。人脸侦测是所有自动化系统运转的第一步,这些系统主要是解决以下问题:脸部识别,脸部追踪和面部表情识别。过去十年里,安全系统以用户身份信息为基础,例如指纹和声音识别,而现在它依赖的则是脸部特征识别。通过使用脸部识别技巧,对图像的特征进行提取和分析,安全系统连接的计算机会做出相应的反应。人脸识别侦测技术目前是计算机视觉研究中比较活跃的热门领域,其局部化和识别通常是录像监控、人机接口、面貌识别和影响数据库管理的首要步骤。尽管人们会假定标准化脸部图像是易获取的,对人脸的定位和追踪依然是脸部识别或表情分析的必备条件。为了对一张人脸进行定位,需要使用照相机或是扫描抓帧器来跟进图像,对其重要特征进行搜索,最后运用这些特征来定位。脸部识别技术被划分为三大类,即,以知识为基础,以图像为基础,以特征为基础。以知识为基础的识别依赖于人类面部特征的一般规则。比如人脸的双眼呈对称分布,一个鼻子,一个嘴巴,部位的相对距离也能够代表一定的关系。在识别出特征之后,要进行验证过程以减少误断。

 

Face detection has attracted many researchers because it has a wide area of applications. Given an image, face detection involves localizing all faces - if any - in this image. Face detection is the first step in any automated system that solves problems such as: face recognition, face tracking, and facial expression recognition [1]. In the past decade, the security systems based on the information about a user’s identity, like fingerprint and voice recognition, but now it depends on facial feature recognition. The extraction of these features from images is done by using face recognition techniques, and that computers of the security systems can then react accordingly. Human face detection is currently an active research area in the computer vision community. Human face localization and detection is often the first step in applications such as video surveillance, human computer interface, and face recognition and image database management. Locating and tracking human faces is a prerequisite for face recognition or facial expressions analysis, although it is often assumed that a normalized face image is available. In order to locate a human face, the system needs to capture an image using a camera and a frame-grabber to process the image, search the image for important features and then use these features to determine the location of the face. The techniques for face detection were classified into three categories i.e. Knowledge based, Image based and Feature based. The knowledge based approach depends on using rules about human facial features to detect faces. Human facial features for examples as two eyes that are symmetric to each other, a nose and mouth, and features’ relative distances represent features relationships. After detecting features, a verification process is done to reduce false detection. This approach is good for frontal images. The difficulty of it is to translate human knowledge into known rules and to detect faces in different poses. In Image based technique there is a predefined standard face pattern is used to match with the segments in the image to determine whether they are faces or not. It uses training algorithms to classify regions into face or non-face classes. Image-based techniques depends on multi-resolution window scanning to detect faces, so these techniques have high detection rates but slower than the feature-based techniques and lastly Feature based technique depends on extraction of facial features that are not affected by variations in lighting conditions, pose, and other factors. These methods are classified according to the extracted features. Feature-based techniques depend on feature derivation and analysis to gain the required knowledge about faces. Features may b论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。

共 1/5 页首页上一页12345下一页尾页

相关文章

    英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非

       Europe (24-hours)
       EN:13917206902
       china (24-hours)
       CN:13917206902
    
    在线客服团队
        全天候24小时在线客服
          QQ:949925041 
      

    微信公众订阅号