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Introduction

Last time…
Looked at the Martingale Model and relationship 
with EMH.
Found evidence for return predictability in FTSE250 
indicating rejection of MM/EMH (compare evidence 
for SP500 – see seminars 1 and 2) 
But this need not imply that the EMH doesn’t hold –
could be that the MM is a poor model of equilibrium 
returns (Joint Hypothesis Problem).

Today…
Testing CAPM and multi-factor models.
Testing the assumptions of the Classical Linear 
Regression Model (OLS) – misspecification testing: 
are the observed data consistent with the statistical 
model?
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Capital Asset Pricing Model (CAPM) 

So far we’ve been working with models of the form

with no structure given to equilibrium returns.   

Review of CAPM (see e.g., Cuthbertson Chp 5):

1. All investors (regardless of preferences) hold the market portfolio (M) which 
is mean variance efficient.  M lies at the point of tangency between the capital 
market line and the efficient frontier. 
2. Investors hold portfolios of the risk free asset and the market portfolio 
which maximize their utility.  The more (less) risk averse the investor the lower 
(higher) the proportion of wealth held in the market portfolio.
3. The return on an individual asset i reflects its relative contribution to the risk 
of the market portfolio as measured by its beta
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Testing CAPM

If we assume that risk adjusted returns are fair games (EMH 
assumption) then the ex-post (observable) form of CAPM 
is

where 

Stochastic process is a martingale difference 
⇒error terms are linearly independent over time.
⇒but error terms could be heteroscedastic over time and 
across stocks (⇒but OLS standard errors are incorrect) 
⇒and errors could be non-normal (⇒but coefficients 
won’t follow t-distributions in small samples⇒invalid
inferences in small samples)
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Testable implications of CAPM

There are both time-series and cross-sectional components to the 
CAPM with testable implications.
For a given stock and beta:

The time-series variation in the excess return on stock i depends solely 
on variation in the excess returns on the market portfolio.
⇒Test intercept=0, no effect of variables other than excess return on 
the market portfolio, linear independence of error terms (EMH) and 
constancy/stability of OLS estimate of beta (see misspecification 
testing below).

Across stocks for a given risk-return trade-off:
The cross sectional variation in excess stock returns depends solely on 
variations in betas.
⇒Test intercept=0, no effect of variables other than beta and that the 
risk-return trade-off is positive.

Should also test for heteroscedasticity (and non-normality) in both 
time-series and cross-section regressions if OLS inferences on 
coefficients are being made (see misspecification testing below). 

( ) 0>− fM rrE
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Basic procedure for testing CAPM
A simple way to test CAPM involves a two-stage 

procedure.
STAGE 1: Estimate a first pass time series regression (for 

each security) on a sub-sample of the data

Need a long enough sample to get reliable estimates of 
the betas - but if too long leads to a problem of non-
constant betas (see structural stability tests below).  

STAGE 2: Estimate a second pass cross-section regression 
using the estimated betas from stage 1  (using data 
for a later period than used in stage 1)

where x is a vector of other risk factors.  This vector 
could include e.g., the own variance of the security 
obtained from stage 1 (measuring diversifiable risk).  
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Basic procedure for testing CAPM

Key predictions: If CAPM is true then we’d expect at stage 2:

Also important to…
Test the stage 1 disturbances for linear dependence (joint test 

of market efficiency and CAPM) + stability of beta estimates.
Before carrying out inferences on stage 2 coefficients test 

disturbances for heteroscedasticity and non-normality (use 
an alternative estimator if there is heteroscedasticity…)
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Measurement 
error in the betas

The fundamental 
problem with this 
procedure is that 
the true betas are 
estimated with 
error

This will lead to 
biased (and 
inconsistent) 
estimates of  
using these betas 
as regressors at 
stage 2 ⇒

iii v+= ββ̂

1γ

Measurement error

True beta

Consequences of measurement error in the explanatory variables 
(see Gujarati Chp 13.5) 

 
Consider the model 
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Measurement error in the betas
One solution is to sort the securities into portfolios and 

estimate betas for the portfolios.
For example, the beta for an equally weighted portfolio of 

m securities is

Assuming the v are                then

The bias in the stage 2 cross-sectional OLS estimator is 
therefore reduced  (see previous slide) 
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Testing CAPM on portfolios of securities
Portfolios are often formed by ranking securities into 

portfolios sorted by:
Size (market cap)
Betas 
Book-to-Market (B-M) value
Size and beta/B-M value

The procedure involves sorting the data by the ranking 
variable(s).

Then dividing the sorted data into portfolios.
Example: You have 20 stocks sorted in ascending order of 

size.  
A portfolio consisting of the first 4 stocks corresponds to 

the lowest quintile of the size distribution.
A portfolio consisting of the last 4 stocks corresponds to 

the highest quintile of the size distribution.
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Problems with using portfolios

Loss of information/variation in betas.  Ideally want portfolios which 
average out measurement errors but preserve variation in the betas. 

Sorting by size leads to betas which are highly negatively correlated 
with size (collinearity problem):
This makes it hard to distinguish beta effects from size effects (see below). 

Sorting by betas leads to a ‘mean reversion’ problem
Basic problem is that high/low beta portfolios tend to over/under-
estimate the true portfolio beta (positive/negative sampling errors 
get bunched in the portfolios).
One solution is to form portfolios from ranked beta estimates from 
one time period (pre-ranking betas) but use data from a later period 
to estimate the betas for the portfolios (post-ranking betas).  

Arguably beta-size sorting is superior to sorting by size or beta alone 
(Fama and French, 1992).  
But this is data intensive.  If there are m portfolios formed on size 
and beta alone there will be m2 beta-size portfolios. 
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Testing CAPM:  Fama and Macbeth (1973) (see 
Cuthbertson Chp 8.2)

Authors used monthly data from Jan 1926 – June 1968 to test CAPM 
1. Portfolio formation period - 6-7 years of data used to estimate        

‘pre-ranking’ betas for individual securities. 20 portfolios formed 
using these betas.

2. Initial estimation period - Betas re-estimated for the 20 portfolios over 
the following 5 years of data (‘post-ranking’ betas). 

3. Testing Period – Using the estimated portfolio betas as regressors in 
cross sectional regressions estimated month by month over the next 4 
year period.

tested  using the average of the testing period estimate  

4. Repeat steps 1.-3. ‘rolling’ through the data (see next slide)
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Fama and MacBeth (1973) rolling regressions

In total there are 9 portfolio 
formation/testing cycles in Fama and 
MacBeth (1973)

The length of the portfolio formation 

periods (~ 7 years) reflects the desire 
to balance:

1. Obtaining robust estimates of the 
betas (from a large sub-sample) 

with 

2. The problems caused by non-
constancy of the betas (resulting 
from too long a sub-sample).

With modern computing power 
could roll the cycle forward one year 
at a time (start the portfolio 
formation in 1926, 1927, 1928…). 

Note that firms will switch between 
portfolios over cycles as their beta 
changes. 
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t-tests on cross-sectional coefficients 
n monthly estimates of the cross-sectional coefficients 
are obtained at stage 3.
Averages of these coefficients (over the testing period) 
can be used to test the CAPM model.
If the error terms are                    then under

If normality doesn’t hold we can still use the t-test if n 
is large ⇒
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Empirical evidence

Fama and MacBeth’s t-tests supported the key predictions 
of CAPM (see slide 7).

However subsequent studies have found empirical 
contradictions to CAPM:
Size effect (Banz, 1981): Small cap stocks found to lie persistently 

above the SML.
Value premium: Stocks with a high B-M value (low price/value 

stocks) also found to lie persistently above the SML.

In light of these contradictions Fama and French (1992, 
1993) considered a 3-factor model comprised of:

1. The excess return on the market portfolio.
2. The return on a size portfolio.
3. The return on a value portfolio.
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Fama and French (1993) 3 factor model

F&F (1993) explained excess returns using a 3 factor model

is the difference between the returns on a portfolio of 
small cap stocks and a portfolio of large caps.

is the difference between the returns on a portfolio of 
high book to market (B-M) value stocks (low price/value 
stocks) and a portfolio with low B-M value (high 
price/growth stocks)

( ) [ ]( ) ( ) ( )tHMLiHMLtSMBiSMBftMtiMftit rErErrErrE ,,,,, βββ ++−=−

SMBr

HMLr
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F&F 3 factor model (interpretation)

The ‘small minus big’ portfolio return captures the size 
effect.
Probably reflects systematically high gearing/high 
default risk in small firms (financial distress premium).
Also small firms tend to have higher and more variable 
growth rates than large firms.

The ‘high minus low’ portfolio return captures the value 
premium.
Probably reflects systematic financial distress caused by 
recession. Low price (high B-M) indicates firm is near 
bankrupt ⇒ penalized with a higher cost of capital.

In both cases the cause of the risk must be 
systematic/pervasive since specific risk can be diversified 
away. 
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Testing the 3 factor model

F&F (1993) used quintiles of size and B-M value to form 25 
size-value sorted portfolios (post 1963 sample).

For each of the portfolios 25 time series regressions are 
estimated (using 3-5 years of data)

to give estimates of the 3 betas for each portfolio.
In a second stage these portfolio betas are used as 

regressors in cross sectional regressions of the form

The portfolio formation and cross-sectional testing ‘rolls’
through the sample analogously to Fama-MacBeth. 

( ) 25,...,1   ,,,,,,0 =+++−+=− prrrrrr pttHMLpHMLtSMBpSMBftMtpMftpt εβββα

ppHMLHMLpSMBSMBpMMfp rr εβγβγβγγ ++++=− ,,,0
ˆˆˆ
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Testing the 3 factor model

Key predictions of 3-factor model: 

With n cross sectional regressions in the testing period there 
are n estimates of the γ’s to test the model (as in CAPM).

t-tests can be used here just as in CAPM tests (see slide 15) 
and valid on the same assumptions (NIID errors or IID 
errors and large n) 
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Findings from 3-factor model

3 factor model explains equilibrium returns better than CAPM:
i)                            positive and significant.
ii) Intercepts  insignificant.
iii) Most of the variation in the cross-section of stock returns 
explained by SMB and HML betas.

Evidence in Davis, Fama and French (2000) suggests 3-factor model is 
robust ‘out of sample’ (pre 1963).

Findings also robust to different sorting variables e.g., P/E ratios but not
to sorting by recent performance (momentum portfolios).  

3-factor model also has problems with small growth (S/L) stocks and 
big value (B/H) stocks which have returns below that predicted by 
the model (negative intercept).

And big growth (B/L) stocks have returns which are too high (positive 
intercept).

Studies covering recent samples indicate small firm effect has 
disappeared (post 1981 when it first appeared in the 
literature⇒semi strong EMH).

HMLSMB γγ ˆ and ˆ
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Detecting departures from the assumptions of the 
Classical Linear Regression Model (CLRM)

When testing CAPM/multi-factor models (or any finance 
model estimated with OLS) very important to check the 
model satisfies the CLRM assumptions.

Misspecification Testing
If the model doesn’t satisfy the CLRM assumptions need to 

think of a remedy (or an alternative estimator).
Example: We saw on slide that measurement errors in the 

betas violated the assumption that the regressors are 
independent of the OLS errors:

⇒OLS estimators are biased (and inconsistent).
One remedy is to form portfolios before estimating the 

betas. 
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CLRM (Brooks, Chp 3)

In matrix form the multiple linear regression model is given by

where:  y is a T×1 vector (dependent variable)
X is a T×k matrix (explanatory variables)
β is a k×1 vector (coefficients)
ε is a T×1 vector (error term) 

The OLS estimator is found by minimizing the residual sum of 
squares…

…wrt which yields the OLS estimator (see Brooks Chp 3A.3)
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CLRM Assumptions

The OLS estimator works well when
A1: The equation is correctly specified

A2:
A3:                               (homoscedasticity)
A4:                                (errors are linearly independent)
A5: rank(X)=k (full column rank) ⇒no perfect correlation 

amongst the regressors (otherwise OLS estimator does 
not exist)

A6: All the variables are stationary.
A7: Errors are Gaussian (important for exact/small sample 

inferences using t and F distributions) 

εβ += Xy
( ) 0=XE iε
( ) ∞<= 2var σε Xi

( ) jiXE ji ≠∀=    ,0εε
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CLRM assumptions

If A1-A6 hold then the OLS estimator is the ‘Best Linear Unbiased 
Estimator’ – BLUE

It has the smallest variance (‘best’) of all linear estimators (‘linear’) 
which are centred on the true parameter value (‘unbiased’)

This is the: 
GAUSS MARKOV THEOREM 

The critical assumptions for unbiasedness of point estimates are A1 
and A2. 

However valid inferences (interval estimates) based on the OLS 
formula for the variance (see previous slide) require assumptions A3 
and A4.

And A7 is important for the validity of t and F tests in small samples.
For the moment we can ignore the consequences of violating A6 since 

returns series are stationary
We’ll return to this issue later when we look at models involving 
non-stationary variables (prices).
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Misspecification tests

Tests for…
Heteroscedasticty (violation of A3)
Autocorrelation (violation of A4)
Wrong functional form (violation of A1)

…presented in the Appendix.
Also Jarque-Bera test for non-normality covered in Lecture 1 and 
Seminar 1. 

These tests are fairly intuitive and covered 
comprehensively in basic text books such as Gujarati 
(Chps 11-13) or Brooks (Chp 4)
Also we will put these tests into practice in future 
seminars
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Testing parameter stability (violation of A1)

A key assumption in the CLRM is that the parameters are 
constant

Recursive estimation provides a general framework for 
testing parameter instability.

Basic idea is to carry out conventional OLS over increasing 
sample periods and then testing whether there are 
significant changes in the model over time.

Important e.g., in testing the stability of market beta 
estimates from time-series regressions. 

Other tests of structural stability (e.g., Chow test/predictive 
failure test – see Brooks Chp 4) assume you know where 
in the sample the structural breaks occur. 
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Testing parameter stability (Mills Chp 6.3.3) 
Write the recursive model as

is simply rows m+1,…,t of the y vector from the  CLRM 
(analogous interpretation for             ).  Need to hold back 
m observations to initialize the estimates.

The recursive residuals (one step ahead forecast errors) are 
given by

If the parameters are stable (and assuming normality) then
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Testing parameter stability

Use the standardized recursive residuals ⇒
to form a ‘CUSUM’ statistic:

The CUSUMSQ statistic is given by:
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Eviews CUSUM and CUSUMSQ tests for time-series of 
market beta estimate (CAPM large cap portfolio)
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Conclusion

3-factor model offers a significant improvement 
on CAPM in explaining equilibrium returns 
(particularly the ‘value premium’).
Important to test the assumptions of the 
statistical model (CLRM) used to test model of 
equilibrium returns: misspecification testing.
We’ll come across other misspecification tests in 
the context of other statistical models. 
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Appendix
Testing for heteroscedasticity (violations of A3)

Numerous tests in the literature (see eg Gujarati Chp 11).
A widely used test is White’s test
Step 1: Estimate the model
Obtain the estimated residuals
Step 2: Regress the squared residuals on the levels, squares and cross 

products of the regressors e.g. if there are 2 regressors then the 
equation would look like,

Under the null hypothesis (homoscedasticity) the slope coefficients 
are jointly zero

Test this using an F test or a Lagrange Multiplier (LM) test based on 
the R-sq from the Step 2 regression 

εβ += Xy
tε̂
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Appendix
Testing for autocorrelation (violations of A4)

1. Ljung Box Q stat (see Lecture 2)
2. Breusch Godfrey LM test
Step 1: Estimate the model.  Obtain the residuals.
Step 2: Regress the residuals on the regressors and p lags 

of the residuals e.g.,

Under the null (no autocorrelation) the γ are jointly zero

Test with an F statistic or an LM stat based on the R-sq 
from Step 2

tptptktkttt vxxx ++++++++= −− εγεγααααε ˆ...ˆ...ˆ 1133221

0...: 10 === pH γγ
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Appendix
Testing functional form assumptions (A1)

Ramsey’s RESET test
Step 1: Estimate the model.  Obtain the residuals and fitted 

values:
Step 2: Regress the residuals on the regressors and powers

of the fitted values 

Under the null that the original model has a linear
functional form the        are jointly zero 

This can be tested with an F-stat or an LM stat using the R-
sq from the Step 2 regression:
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If this statistic is significant it 
suggests our linear model (from Step 1) 

has missed important nonlinearities.

In practice p is often set at 3 
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