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Today

1. Key problems with Engle-Granger 2 Step 
Estimator.

2. VAR and VECM models.
3. ‘Johansen’: A systems approach to testing for 

cointegration.
Seminar 8: Testing PPP using Johansen
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Problems with EG 2 step: 
1. Presence of multiple cointegrating relationships.

A key problem with EG 2 step is that it can only identify a 
single cointegrating relationship.

Single equation OLS is used to estimate the long-run (Step 1).

However with n variables there can be up to n-1
cointegrating relationships (see Appendix 1):

If EG 2 Step is used in this context we may end up 
estimating some unidentified linear combination of all 
the cointegrating relationships.

1−≤ nr‘r’ is standard notation for the 
number of cointegrating
relationships

Need at least one I(1) linear 
combination which corresponds to 
the common stochastic trend(s):

n-r≥1
If r=n then all the variables must be 
individually I(0) (see Appendix 1). ⇒with n>2 there can be multiple 

cointegrating relationships (r>1)
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Example: Testing the Expectations Hypothesis of the term 
structure (see Brooks 7.12 and lecture 7).

A test of the EH could be based on testing for cointegration
amongst pairs of yields of different maturities.

However, a more comprehensive (and powerful) test could be 
based on a vector of yields from across the maturity spectrum

Normalizing the spreads on the one period spot rate, EH implies 
there are n-1 (linearly independent) spreads which are I(0): 
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Problems with EG 2 step: 
2. EG 2 step is an inefficient estimator 

On one level the distinction between exogenous and 
endogenous variables is unimportant with cointegrated
variables.
– Super-consistency still holds even if X is endogenous:

So in effect it doesn’t matter which variable (Y or X) we 
make the ‘dependent variable’:
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1With cointegrated variables super-consistency still holds
in the long run equation even if X is endogenous.  
Why? Because the sample variance of X tends to ∞ (X is I(1)).

This is in sharp contrast to the CLRM where Y and X 
are assumed to be I(0).  In that case endogeneity
implies the OLS estimator is inconsistent (see Lecture 4).
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Either regression will yield super-consistent estimates 
of the long run parameters.

For example, with PPP we ‘normalized’ the relationship
on log(S) (log nominal exchange rate).  However we 
might just as well have normalized on log(P) or log(P*).
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Problems with EG 2 step: inefficiency
However this also means we can write an ECM for X. Starting 

from the ADL for X…

…the corresponding ECM for X is:

Therefore Y and X form a system of ECMs:
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Both equations potentially contain information 
about the long-run parameters via the error 
correction term.  An efficient information will use this 
information.  Therefore a single equation approach 
(EG 2 Step) will in general be inefficient.

There is an important exception.  If one of the 
adjustment parameters is zero then that equation 
contains no information about the long-run 
parameters.  In that case the corresponding variable
(e.g., X) is weakly exogenous for the long-run 
parameters – its equation can be ignored in estimating
the long-run parameters.  
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Problems with EG 2 Step

Based on these problems with EG 2 Step, we 
would like an alternative estimator which

1. Can identify multiple cointegrating
relationships.

2. Is an efficient estimator of the long-run 
parameters.

This will lead us to look at the Johansen Systems 
Estimator shortly.

But before that we need to look briefly at VAR 
models…
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From single to multiple equations: VAR
A popular time series (a-theoretical) model for systems of variables is a 

VECTOR AUTOREGRESSION (VAR)

A VAR model provides a simple framework for estimating the dynamics 
of a system of endogenous variables.  Specifically: 

• All variables are treated as endogenous (each has its own equation) –
no assumptions of exogeneity are made. 

• Since only lagged variables appear on the RHS there is no  
endogenous regressor problem in estimation – applying OLS 
equation by equation is a consistent (and efficient) estimator of the 
unrestricted coefficients (the A matrices). 

• VARs are used widely in forecasting systems of variables (analogous 
to using AR models in univariate time series) and testing causality.

tptptt vyAyAy +++= −− ...11

y is an n×1 vector of variables n×n matrices of 
AR parameters

IID vector of disturbances
usually assumed to be
Gaussian for estimation.

The model may also include 
constant and trend terms.
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Application of VAR models: testing Granger causality in a 
stationary VAR (Brooks 6.14).

X is said to Granger cause Y if lagged values of X affect Y.  A 
VAR can be used to test this.  For example: 

The null that X does not Granger cause Y is given by: 

Similarly the null that Y does not Granger cause X is given by:

The F tests are only valid in a stationary VAR (Y and X~I(0)).  
– In a nonstationary VAR the parameters have non-standard 

distributions.
– In that case need to test causality in either: 

• A VAR in the I(0) differences of Y and X (if the variables are not 
cointegrated) or 

• A VECM (if the variables are cointegrated – see below). 
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Bivariate VAR(p) model
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Application of VAR models: cointegration in a non-
stationary VAR

The Granger Representation Theorem generalizes to systems 
of I(1) variables. If the system is cointegrated then there 
exists a: VECTOR ERROR CORRECTION MODEL (VECM)  
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From VAR(2) to VECM(1)

In general a cointegrated VAR(p) 
model has the following VECM(p-1)
representation
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Cointegrated VAR model: VECM

The matrix Π is central to the analysis.  It is called the ‘long-run 
matrix’ because it defines the equilibrium solution to the 
system:

The rank of Π (number of linearly independent rows/columns) 
tells us how many (if any) cointegrating relationships there 
are in the system:

0                                     
for solution  following  theyields VECM the
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( ) rrank =Π  Implications 
0=r  Π⇒  is a null matrix (no long run relationships)  

⇒The model is a VAR in first differences 
nr <<0  ⇒There are r cointegrating vectors 

nr =  ⇒The variables in the VAR are stationary in levels
(see Appendix 1: PROPOSITION 2) 
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Cointegrated VAR model: VECM
If                         then the long run matrix factorizes as

Example: n=3; r=2
⇒

There are 2 cointegrating
relationships

⇒

( ) rrank =Π

βα ′=Π
n×r matrix of equilibrium 
adjustment parameters

r×n matrix containing 
the  cointegrating vectors
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ijα measures the speed of adjustment of 

variable i to disequilibrium in cointegrating
relationship j.

Short run dynamics ignored in
this example to focus on the 
long-run parameters.
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VECM: Weak exogeneity for the long run parameters

Note that if the adjustment parameters α are all 
different from zero then each equation contains 
information about the long-run parameters.

However if row i of α is null then the equation for 
variable i contains no information about the 
long-run parameters.

In that case it is valid to drop equation i from the 
VECM when estimating the long run parameters 
⇒variable i is weakly exogenous for the long-
run parameters (see slide 6 for a bivariate
example).
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Weak exogeneity for β

Example: n=3; r=1
⇒

For estimating β it is therefore valid to use a single 
equation estimator
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Note that if r>1 we would still need to use a systems estimator.
EG 2 step cannot identify more than one cointegrating vector.

EG 2 step can be used to efficiently 
estimate this equation (given r=1).
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Systems estimator: Johansen Full Information 
Maximum Likelihood

The Johansen estimator provides a framework for:
1. Estimating the cointegrating rank (rank of Π) 
i.e., the number of long run relationships 
2. Estimating the cointegrating vectors and 
adjustment parameters (β and α)
3. Testing hypotheses about β and α e.g., 

⇒ Testing PPP and EH restrictions on β
⇒Testing weak exogeneity restrictions on α

In essence Johansen estimates all the distinct linear 
combinations of the levels y which produce high correlations
with the differences Δy.  These linear combinations are the 
cointegrating vectors.
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Johansen estimator: background
In a sense the long-run matrix Π captures the correlation 

between linear combinations of the levels with the 
differences.
– e.g., if Π=0 then there are no linear combinations of the levels 

which are correlated with the differences ⇒ no cointegration.

To be precise the correlations are based on the matrix of 
squared correlations between the levels and differences: 

Johansen uses the ‘canonical correlations’ which are given by 
the characteristic roots (eigenvalues) of
– These eigenvalues measure correlations between distinct (linearly 

independent) combinations of the levels with the differences.              

The cointegrating vectors are given by the corresponding 
characteristic vectors (eigenvectors).

Π~
This matrix is closely related to Π (see Appendix 2). Basically 
using this matrix (instead of Π) ensures the correlations lie 
between 0 and 1.

Π~
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Johansen estimator: background
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Rows of B’ (eigenvectors) give the 
cointegrating vectors.  These
vectors are linearly independent.
They capture distinct combinations
of the levels which are I(0).

Diagonal matrix of eigenvalues
(canonical correlations).  These are 
ordered in descending value:

Characteristic roots/eigenvalues of       

If there are r linear combinations of the variables
which are I(0) (r cointegrating vectors) then there are
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Johansen estimator: implementation

Step 1: Ensure the variables in the system are individually 
I(1). Estimate a VAR of order p in the levels of the 
variables.  
– The Johansen estimator involves ML assuming Gaussian iid errors. 
– Therefore need to set p large enough to ensure a Gaussian iid

error term in the VAR.
– In practice the estimator is robust to non-normal errors.
– But important that the errors are linearly independent 

(see Seminar 8). 

Step 2: In the VECM of order p−1 estimate the cointegrating
rank, r, and the factorization 

Step 3: Test hypotheses about the α and β (see Seminar 8).

βα ′=Π
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Johansen: estimating the cointegrating rank
Tests of the cointegrating rank are based on the eigenvalues of     

(see slide 17).  If rank(Π)=r then:
– The first r (largest) eigenvalues are non-zero.
– The last n-r eigenvalues are zero: 

⇒

Johansen proposed two tests of cointegrating rank:
1. Maximum eigenvalue statistic:

2. Trace statistic:  
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Large test value ⇒ at least one of the
last n-r eigenvalues is large ⇒ rejection
of the null. 
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Johansen: estimating the cointegrating rank

Test strategy

Start with H0 : r=0.  
If this null is not rejected then 

⇒no cointegration.  
If it is rejected then test H0 : r≤1.  
If this null is not rejected then 

⇒r=1 (since H0 : r=0 was 
rejected)

If it is rejected then test H0: r≤2
If this null is not rejected then 

⇒r=2
If it is rejected then test H0: r≤3…
Keep increasing the value of r 

until the null is not rejected.

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical ValProb.**

None * 0.053693 43.34718 29.79707 0.0008
At most 1 0.014913 11.06219 15.49471 0.2077
At most 2 0.003877 2.272187 3.841466 0.1317

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical ValProb.**

None * 0.053693 32.28499 21.13162 0.0009
At most 1 0.014913 8.790006 14.2646 0.3041
At most 2 0.003877 2.272187 3.841466 0.1317

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0
 * denotes rejection of the hypothesis at the 0.05 level
 **MacKinnon-Haug-Michelis (1999) p-values

Example: PPP - Denmark-US

Both the trace and 
max-eigenvalue tests 
indicate r=1.  This is
in accord with PPP.
r>1 would be hard to
interpret. Always use 
economics/finance and 
stats to reach a ‘sensible’
conclusion about r.
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Johansen: estimating the cointegrating vectors and 
adjustment parameters

The cointegrating vectors are estimated as the r 
eigenvectors of corresponding to the largest r 
eigenvalues:

These are the linear combinations of the levels of the 
variables which have the highest correlation with the 
differences.

These linear combinations must be I(0) in order to be 
correlated with the I(0) differences (the correlation 
between I(1) and I(0) variables is zero ).

The adjustment parameters (α) can then be estimated from 
a regression of 

BB ′Λ=Π~
Estimates of cointegrating vectors
correspond to the first r rows of B’

)(given  ˆon 11 +−− ΔΔ′Δ ptt-ptt y,...,yy y β

Π~
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Johansen: Issue of identification
The Johansen estimator does not identify the long-run 

parameters.  Different combinations of α and β give rise 
to the same Π :

Need to impose restrictions on the β for identification.
If r=1 then only one restriction is required.  For example:  

However with r>1 then r linearly independent restrictions 
are required on each of the cointegrating vectors for 
identification: 
– e.g., if r=2 a normalization and an exclusion restriction (setting 

one of the long-run coefficients to 0) would suffice in each vector. 
– These restrictions should follow from economic/finance theory.

βαβα ′=′=Π −1PP
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P is any invertible r×r matrix

With r=1 it’s sufficient to normalize the
cointegrating vector on one of the variables
for identification (e.g., normalize on log(S) in
the PPP relationship)
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Johansen: example of identification
The EH of the term structure implies β is given by:

The theory implies there are n-1 cointegrating relationships 
(see slide 4).

The theory also provides the restrictions required to identify 
β.  For each cointegrating vector there is:
– A normalization on the one period spot yield (R).
– A homogeneity restriction (coefficient of -1 on        ).  
– n-2 exclusion restrictions.

In total there are n restrictions on each cointegrating vector.
In this case the long-run parameters are over-identified:

– Only n-1 restrictions are required for just identification of β.
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Conclusion

Johansen’s FIML estimator is a potentially powerful 
approach to estimating and testing cointegrated systems 
of I(1) variables.

However, Johansen has numerous practical problems (aside 
from being quite hard to understand!)
– The estimates of r are often sensitive to the choice of VAR order p.
– Sometimes more cointegrating relationships are found than 

implied by economic/finance theory.
– Also, the long run estimates cannot be interpreted without some 

underlying theory to help identify the parameters.
You need sound economic/finance theory to help you 

decide on the cointegrating rank and to identify the long 
run parameters.  
– Without this basis in theory you will get lost applying Johansen

(for sure).
Remember this last point when applying Johansen in the 

project.
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PROPOSITION 1: Amongst n  I(1) variables there are up to 1−n  stationary linear 
combinations. 
 
Proof: Consider the case with 2=n .  Suppose there are two linear combinations of I(1) 
variables which are I(0) 
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Since w is I(0) and x is I(1) therefore 21 bb =  so there can be only 11=−n  I(0) linear 
combinations of x and y. 
 
PROPOSITION 2: If there are n I(0) linear combinations amongst a group of n variables 
then all the variables must be individually I(0). 
 
Proof: From the proof of PROPOSITION 1 
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Now if 21 bb ≠  (so that there are 2=n  stationary linear combinations) then x must be I(0) 
since w is I(0).  This also means that y must be I(0) since y is a linear combination of x
and w.  
 

Appendix 1:
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Relationship between Π (long-run matrix) and Π~ (squared correlation matrix) 
 
An estimator of Π is given by  

1
0

ˆ −=Π kkk SS  
where: kS0 is the covariance matrix of the differences (‘0’) and levels (‘k’) conditional on 
the short run dynamics; and kkS   is the variance-covariance matrix of the levels 
conditional on the short-run dynamics. 
 
The correlation matrix between the levels and differences is 
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where 00S is the variance-covariance matrix of the differences conditional on the short 
run dynamics.  The ‘squared’ correlations are given by 
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The Johansen estimator finds the eigenvalues of Π~  by finding the n characteristic roots 
of the determinant equation 

0~ =Π−Iλ  

The cointegrating vectors are the r eigenvectors corresponding to the r non-zero solutions 
to this equation.  These vectors give the r linear combinations of the levels which are 
correlated with the differences.

Appendix 2:
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