
Seminar 4: ARMA modelling of the forward premium: Box Jenkins methodology 
and forecasting. 

 
 
 
The objectives of this seminar are to: 
 

• Identify, estimate and test an ARMA model for the forward premium (Box-
Jenkins methodology). 

• Forecast the forward premium using this ARMA model and using the CIP 
(structural) model estimated in Seminar 3. 

• Evaluate the forecasts from both models to see which provides better out-of-
sample forecasts of the forward premium. 

 
The learning outcomes from this seminar will be to develop your understanding of: 
 

• ARMA modelling (identification, estimation and testing) and forecasting in 
Eviews. 

• Forecast evaluation. 
• The utility of ARMA models as forecasting tools. 

 
The analysis is carried out in this handout for models of the forward premium (using the 
same workfile, cip_sem3.wf1, as used in Seminar 3).  Try carrying out a similar analysis 
in your own time comparing the forecasts from a structural model of the 3 month holding 
period returns on sterling (UIP) with those from an ARMA model of this variable. 
 
We are going to estimate the models for the period 5/09/2001 – 9/30/2004 .  
Then we are going to 

( )Tt ,...,1=
forecast the forward premium out of sample for the period 

10/1/2004 – 9/30/2005 ( )HTTt ++= ,...,1 . 
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1. Forecasting with the CIP model 
 
 
Firstly we need to re-estimate the GMM CIP model (see seminar 3) for the in sample 
estimation period 5/09/2001 – 9/30/2004. 
 

 

Open the equation cip_gmm (which you saved in the last seminar) and click Estimate 
on the equation toolbar.  Change the Estimation settings/sample to: 5/09/2001 – 
9/30/2004.  Then click OK.  

 
Now forecast the forward premium for the period 10/1/2004 – 9/30/2005. 

 
 
 

Click Forecast on the equation toolbar.  Change the Forecast sample to: 10/1/2004 – 
9/30/2005.  Click OK: 
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Forecast: FP_3MF
Actual: FP_3M
Forecast sample: 10/01/2004 9/30/2005
Included observations: 261

Root Mean Squared Error 0.004045
Mean Absolute Error      0.003422
Mean Abs. Percent Error 26.21858
Theil Inequality Coefficient  0.138642
     Bias Proportion         0.560762
     Variance Proportion  0.049786
     Covariance Proportion  0.389452

Freeze this forecast view for 
comparison later with the 
ARMA model forecasts: 
Click freeze on the equation 
toolbar.  Then name the 
resulting graph: cip_fcast 

 
These forecasts are static forecasts.  These forecasts are made using the: 

• Actual values of the explanatory variables (in this case, the interest differential) in 
the forecast period. 

• Estimated coefficients from the in-sample estimation period ( )β̂ : 
 

Hhxy hThT ,...,1   ,ˆˆ =′= ++ β 
 



The forecast error is given by: 
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and parameter uncertainty 
(the second term).  

 
 
 
 
 
 
The forecast error variance is therefore: 
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From the above, a 95% forecast interval is given by: 
 

( )S
hThT ey ++ ± ˆvar96.1ˆ 

 
 
The point forecasts (  and the 95% forecast interval are plotted in the Eviews output. )hTy +ˆ
 
Forecast evaluation (see Brooks 5.12.8 and Eviews help index under ‘Forecast, interval’) 
 
What is the total amount of error associated with the forecast? A forecast with a smaller 
total error is statistically more accurate. Clearly, a simple sum of the forecast errors 
wouldn’t work: positive and negative errors would cancel out.  Alternatives include 
summing the squared forecast errors or the absolute forecast errors:  
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Compare these statistics over 
different models for y.  The model 
with the smallest values for 
RMSE/MAE provides the most 
accurate forecasts. 
 
RMSE is based on a quadratic loss 
function (i.e., it squares the forecast 
errors).  It therefore penalizes large 
forecast errors (outliers) more 
heavily than MAE. 
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(MAPE)Error PercentageAbsoluteMean The MAE is often 
reported in % 
(scale-free) terms. 
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(TIC)t CoefficienInequalityTheil TIC lies between zero and one.  
A perfect forecast would imply 
TIC=0 (RMSE=0).   

 
 
 
 
 
 
 
 
It’s also useful to see how well the forecast predicts: 
 
 i) The mean of the actual series 
 ii) The variance of the actual series 
 
For example, the forecast may predict one of these well but not the other.  In this context, 
Eviews reports a ‘bias proportion’ and ‘variance proportion’ which is informative about 
the accuracy of the forecasts of the mean and variance respectively of the series in the 
forecast period.  Small bias and variance proportions indicate better forecasting of the 
mean and variance respectively.  The covariance proportion captures the remaining 
unsystematic forecast error.  This proportion will be large relative to the bias and 
variance proportions if the forecasts of the mean and variance are accurate (the bias, 
variance and covariance proportions sum to unity).  
 
For the GMM CIP model: 
 

• 56% of the total forecast error is due to inaccuracy in forecasting the mean of the 
forward premium (bias proportion). 

• About 5% of the total forecast error is due to inaccuracy in forecasting the 
variance of the forward premium (variance proportion). 

• The remaining 39% is due to unsystematic forecast error (covariance proportion). 
 
This suggests that quite a large percentage of the total forecast error is due to inaccuracy 
in forecasting the mean of the forward premium.  Can we build a model with more 
accurate forecasts of the forward premium?  We will now go on to estimate and forecast 
an ARMA model for the forward premium. 
 
2. Building an ARMA model for the forward premium 
 
The three stages in the Box-Jenkins approach to ARMA modelling are: 
 

1. Identification 
2. Estimation  
3. Testing 

 
(see lecture 5 and Brooks 5.7) 



Identification and estimation 
 
Firstly we look at the ACF and PACF of the forward premium to help select an 
appropriate ARMA model. 
 

 

Click on the Sample button (workfile toolbar) and re-set the sample to the in-sample 
estimation period: 5/09/2001 – 9/30/2004 
 
Now open fp_3m and click View/Correlogram/Level: 
 
 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|****** |        .|****** | 1 0.783 0.783 545.22 0.000 
       .|****** |        .|***    | 2 0.787 0.449 1096.6 0.000 
       .|****** |        .|***    | 3 0.806 0.372 1675.6 0.000 
       .|****** |        .|*      | 4 0.784 0.195 2223.2 0.000 
       .|****** |        .|**     | 5 0.800 0.223 2794.1 0.000 
       .|****** |        .|*      | 6 0.794 0.159 3358.1 0.000 
       .|****** |        .|*      | 7 0.789 0.124 3915.3 0.000 
       .|****** |        .|*      | 8 0.787 0.091 4470.7 0.000 
       .|****** |        .|*      | 9 0.793 0.112 5034.3 0.000 
       .|****** |        .|.      | 10 0.772 0.013 5570.0 0.000 

 
 

The first thing to note is the slow decay in the ACF.  This suggests the 3-month forward 
premium may be non-stationary!  So far, in accordance with finance theory, we’ve been 
assuming the forward premium is stationary (implying the forward and spot rates move 
together in the long-run).   
 
For the moment, suppose we try and interpret the above ACF and PACF.  There are 9 
spikes in the PACF (and a slow decay in the ACF) so we might try fitting an AR(9) 
model. (This is subjective; other interpretations are possible – try fitting ARMA models 
for comparison).    
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

On the main toolbar click Quick/Estimate Equation (Method=Least 
Squares) and enter: 
 
fp_3m c ar(1) ar(2) ar(3) ar(4) ar(5) ar(6) ar(7) ar(8) ar(9) 
 
Dependent Variable: FP_3M
Method: Least Squares
Date: 02/11/07   Time: 12:14
Sample (adjusted): 5/23/2001 9/30/2004
Included observations: 877 after adjustments
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.020211 0.004986 4.053455 0.0001
AR(1) 0.023083 0.03363 0.686383 0.4927
AR(2) 0.054673 0.033428 1.635527 0.1023
AR(3) 0.15936 0.033157 4.80619 0
AR(4) 0.071129 0.033303 2.135805 0.033
AR(5) 0.164254 0.03292 4.989539 0
AR(6) 0.130829 0.033304 3.928378 0.0001
AR(7) 0.124539 0.033154 3.75642 0.0002
AR(8) 0.108111 0.033383 3.238513 0.0012
AR(9) 0.138852 0.033595 4.133057 0

R-squared 0.782298     Mean dependent va 0.016244
Adjusted R-squared 0.780038     S.D. dependent var 0.006525
S.E. of regression 0.00306     Akaike info criterion -8.729292
Sum squared resid 0.00812     Schwarz criterion -8.674828
Log likelihood 3837.795     F-statistic 346.1678
Durbin-Watson stat 2.011531     Prob(F-statistic) 0

Inverted AR Roots 1      .56-.58i    .56+.58i  .09+.77i
 .09-.77i     -.43-.66i   -.43+.66i -.71+.28i
-.71-.28i Our suspicions are confirmed – 

there is one unit root in the AR 
polynomial indicating the 
forward premium is non-
stationary. 

The non-stationarity of the forward premium suggests the forward and spot rates are 
unrelated (they drift apart) in the long-run!  This finding is counter-intuitive from a 
finance perspective: if the spot and forward rates are driven by the same fundamentals 
then we would expect them to be related in the long-run (implying the forward 
premium is stationary).  However, it is not uncommon in empirical studies to find that 
the forward premium is non-stationary.   This paradox may be due to ‘near unit root’ 
or long memory behaviour in the forward premium.  This is behaviour which is ‘close’ 
to being non-stationary so that standard tests/models incorrectly indicate that the series 
is non-stationary (see Cuthbertson and Nitzsche, 2004, 25.3: Time-Series Properties 
for a discussion of the time-series properties of the forward premium).  We will return 
to the issue of modelling long-memory in financial data in a later class.   

 



For now we will proceed on the basis that the forward premium has one unit root.  On 
this basis we need to first difference the forward premium to make it stationary (‘remove’ 
the unit root).   Then we can identify, estimate and test an ARMA model for the 
differenced (stationary) series. 
 
Firstly, inspect the correlogram of the first difference of the forward premium: 

 

Open fp_3m and click View/Correlogram/1st difference: 
  

 

 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

    ****|.      |     ****|.      | 1 -0.514 -0.514 234.18 0.000 
       .|.      |      ***|.      | 2 -0.035 -0.406 235.28 0.000 
       .|*      |       **|.      | 3 0.097 -0.222 243.74 0.000 
       *|.      |       **|.      | 4 -0.090 -0.248 250.99 0.000 
       .|.      |        *|.      | 5 0.051 -0.183 253.30 0.000 
       .|.      |        *|.      | 6 0.002 -0.145 253.30 0.000 
       .|.      |        *|.      | 7 -0.014 -0.117 253.47 0.000 
       .|.      |        *|.      | 8 -0.013 -0.140 253.63 0.000 
       .|.      |        .|.      | 9 0.056 -0.046 256.46 0.000 
       .|.      |        .|.      | 10 -0.050 -0.056 258.74 0.000 

 
 

Firstly note that differencing the series has indeed resulted in a stationary series (explain 
why).  There are 3-4 spikes in the ACF and the PACF exhibits a decaying pattern.  This 
suggests that an MA(4) model may be appropriate for the first difference of the forward 
premium (see lecture 5).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

On the main toolbar click Quick/Estimate Equation (Method=Least Squares) and 
enter: 
 
d(fp_3m) c ma(1) ma(2) ma(3) ma(4) 
 
Dependent Variable: D(FP_3M)
Method: Least Squares
Date: 02/11/07   Time: 13:21
Sample (adjusted): 5/11/2001 9/30/2004
Included observations: 885 after adjustments
Convergence achieved after 14 iterations
Backcast: 5/07/2001 5/10/2001

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.93E-05 9.20E-06 2.100871 0.0359
MA(1) -1.006855 0.0337 -29.87718 0
MA(2) 0.018719 0.047703 0.392414 0.6948
MA(3) 0.105833 0.047703 2.218604 0.0268
MA(4) -0.027969 0.033755 -0.828612 0.4075

R-squared 0.50812     Mean dependent va 2.09E-05
Adjusted R-squared 0.505885     S.D. dependent var 0.004297
S.E. of regression 0.00302     Akaike info criterion -8.761287
Sum squared resid 0.008028     Schwarz criterion -8.73425
Log likelihood 3881.87     F-statistic 227.2639
Durbin-Watson stat 2.003221     Prob(F-statistic) 0

Inverted MA Roots 0.89      .24-.18i    .24+.18i -0.36
 

 
The coefficients on the second and fourth MA terms are statistically insignificant.  We 
will therefore drop these terms to increase the efficiency (reduce the variance) of our 
estimates (including irrelevant variables reduces efficiency).  Click Estimate on the 
equation toolbar and enter: 
 
d(fp_3m) c ma(1) ma(3)  
 
Dependent Variable: D(FP_3M)
Method: Least Squares
Date: 02/11/07   Time: 13:33
Sample (adjusted): 5/11/2001 9/30/2004
Included observations: 885 after adjustments
Convergence achieved after 7 iterations
Backcast: 5/08/2001 5/10/2001

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.93E-05 9.46E-06 2.034317 0.0422
MA(1) -0.996568 0.023738 -41.98282 0
MA(3) 0.088954 0.023803 3.737046 0.0002

R-squared 0.507603     Mean dependent va 2.09E-05
Adjusted R-squared 0.506486     S.D. dependent var 0.004297
S.E. of regression 0.003018     Akaike info criterion -8.764755
Sum squared resid 0.008036     Schwarz criterion -8.748533
Log likelihood 3881.404     F-statistic 454.6183
Durbin-Watson stat 2.026844     Prob(F-statistic) 0

Inverted MA Roots 0.88 0.38 -0.27
 

 

Try estimating alternative 
AR/MA/ARMA models for the 
differenced forward premium.  Compare 
the SC to see which is the ‘best’ model 
(choose the model with the smallest SC).  
Note that AIC tends to over-fit the 
number of terms (it chooses models with 
too many AR/MA terms)  



Testing 
 
Now we need to test whether this MA model has ‘mopped up’ all the dynamics in the 
data.  To do this look at the correlogram for the model residuals: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Click View/Residual Tests/Correlogram Q – statistics 
 
 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|.      |        .|.      | 1 -0.014 -0.014 0.1639
       .|.      |        .|.      | 2 0.014 0.014 0.3337
       .|.      |        .|.      | 3 0.031 0.031 1.1707 0.279
       *|.      |        *|.      | 4 -0.062 -0.062 4.6284 0.099
       .|.      |        .|.      | 5 0.025 0.023 5.1880 0.159
       .|.      |        .|.      | 6 0.008 0.009 5.2412 0.263
       .|.      |        .|.      | 7 -0.003 0.001 5.2473 0.386
       .|.      |        .|.      | 8 -0.000 -0.006 5.2473 0.513
       .|.      |        .|.      | 9 0.034 0.037 6.3011 0.505
       .|.      |        .|.      | 10 -0.042 -0.041 7.8602 0.447

 
  

 
The ACF and PACF are compatible with the residuals following a white noise process 
(be sure you understand why).  This indicates the MA model is an adequate 
representation of the first difference of the forward premium. 
 
 
3. Forecasting the forward premium with the ARMA model 
 
The final piece of analysis is to forecast the forward premium using the MA model for 
the differenced forward premium and to compare these forecasts with those from the CIP 
model. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click Forecast on the equation toolbar.   
Select fp_3m as the Series to forecast.   
Change the Forecast sample to: 10/1/2004 – 9/30/2005.   
Change the Method to Static forecast.   
 
 
 
 
 
 
Click OK: 
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Forecast: FP_3MF
Actual: FP_3M
Forecast sample: 10/01/2004 9/30/2005
Included observations: 261

Root Mean Squared Error 0.002733
Mean Absolute Error      0.002096
Mean Abs. Percent Error 26.03801
Theil Inequality Coefficient  0.082788
     Bias Proportion         0.137034
     Variance Proportion  0.051547
     Covariance Proportion  0.811418

 

The ‘static’ option will calculate one-step ahead 
forecasts for the ARMA model.  There is an 
alternative option for this model to make dynamic 
forecasts.  Dynamic forecasts use only information 
available up to time T (the end of the estimation 
period) to make the forecast.  This requires the 
values of the explanatory variables themselves to be 
forecasted in the out-of-sample period.  An ARMA 
model generates forecasts of its own explanatory 
variables since these are simply lagged values of the 
dependent variable (and error terms).  Accordingly 
the model can be forecasted recursively (e.g., the 
forecast for  can be used subsequently to 

forecast  and so on up to ).  This is 
sometimes called 

1+Ty

2+Ty HTy +

multi-step or h-step-ahead 
forecasting.   
 
In contrast the static forecasts reported for the CIP 
model used the actual values of the explanatory 
variable (interest differential) to make forecasts.  
There was no option to make dynamic forecast in 
that case because the CIP model does not generate 
forecasts of the interest differential.    

 
Q: Compare the forecasts of the forward premium from the MA model with those from 
the CIP (structural) model.  Which model provides the more accurate forecasts?   
 
On all criteria the time series model out-performs the CIP model in the accuracy of its 
forecasts: the RMSE, MAE, MAPE and TIC are all smaller for the ARMA model than 
the CIP model.  Notice also that the bias proportion, at around 14%, is much smaller for 
the ARMA model than the CIP model (which was around 56%).  This suggests that the 
ARMA model forecasts the mean of the forward premium in the out-of-sample period 
much more accurately than the CIP model. 
 



 
Conclusions 
 
 
ARMA models are a-theoretical, statistical models and are of little use for policy 
formation. However they are very useful for forecasting financial time series and often do 
this better than structural/theory based models.  A Box-Jenkins analysis led to the 
estimation of an MA model for the first difference of the forward premium.  The 
forecasts of the forward premium from this MA model provided more accurate forecasts 
than a CIP (structural) model for the forward premium.   
 
The ARMA modelling highlighted a paradox in that the forward premium is apparently 
non-stationary (it has a unit root).  This finding is in conflict with the theoretical model 
(which predicts the forward premium is stationary).  This finding is not a problem for the 
statistical (ARMA) model since first-differencing removes the unit root; a stationary 
ARMA model can simply be built for the first difference of the forward premium.  
However, whilst this solution is statistically valid, it is not a wholly satisfactory outcome 
as it leaves unresolved the theoretical paradox of a non-stationary forward premium.    
Perhaps this failing is due to inadequacies in our statistical (ARMA) model to describe a 
wider range of ‘near’ unit root or long memory behaviour in the forward premium.  We 
will explore this issue in a future class.     
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