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Risk of Extreme Events in Multiobjective Decision Trees
Part 1. Severe Events
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Earlier work with decision trees identified nonseparability as an obstacle to minimizing the
conditional expected value, a measure of the risk of extreme events, by the well-known
method of averaging out and folding back. This first of two companion papers addresses the
conditional expected value that is defined as the expected outcome assuming the exceedance
of a threshold 

 

b

 

, where 

 

b

 

 is preselected by the decision maker. An approach is proposed to
overcome the need to evaluate all policies in order to identify the optimal policy. The ap-
proach is based on the insight that the conditional expected value is separable into two con-
stituent elements of risk and can thus be optimized along with other objectives, including the
unconditional expected value of the outcome, by using a multiobjective decision tree. An ex-

 

ample of sequential decision making for improving highway capacity is given.
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1. INTRODUCTION

 

Decision trees have been prominent in decision
analysis since the 1960s (e.g., Magee 1964a, 1964b,
Massé 1962, and Raiffa 1968). Corner and Kirkwood
(1991) give extensive references to publications on
decision trees. Decision trees have the advantage of
graphically representing the sequence of decisions.
Therefore, they help the decision analyst to better
structure the problem formulation and to communi-
cate with decision makers. However, decision trees
are typically limited to the optimization of a scalar
objective (single-objective decision tree, SODT).
Haimes 

 

et al.

 

 (1990) introduced the concept of multi-
objective decision trees (MODT). In particular, an
MODT can be used with various measures of risk as
objective(s). Here, the definition of 

 

risk

 

 as a 

 

measure

of the probability and severity of adverse effects

 

 is
adopted, inspired by Lowrance (1976) and similarly
by Kaplan and Garrick (1981). A common measure
of performance for decision making in the face of risk
is the unconditional expected value of the outcome.
(Utility, or value, functions of the outcome are not
addressed in this paper—e.g., see Keeney and Raiffa
(1976), or Pratt 

 

et al.

 

 (1995).) However, a critique
voiced in the field of risk assessment against the sole
use of the unconditional expected value (traditionally
used in single-objective decision trees, SODTs) is
that it intermingles the impacts of low-probability,
high-damage cases with those of high-probability,
low-damage cases (Kaplan and Garrick 1981, Haimes

 

et al.

 

 1990). Often decision makers will be most con-
cerned with the extreme events with low probability
of occurrence and high severity. Bier 

 

et al.

 

 (1999) dis-
cuss the assessment and management of the risk of
extreme events.

This first of two articles on the averaging out and
folding back in decision trees of measures of risk of
extreme events investigates the use of the 

 

conditional
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expected value of the outcome (a loss or damage),

 

given that the magnitude of the outcome attains at least
a given threshold 

 

b

 

, which defines a range of severe
events known to be of concern to the decision maker.
Although the decision maker is free to choose the
threshold 

 

b

 

 according to individual concerns, selec-
tion will often be driven by some feature of the prob-
lem under consideration. For example, the decision
maker may be concerned with some project causing
extreme costs, e.g., a budget overrun, and 

 

b

 

 may then
be chosen to equal the budgeted amount—see the ex-
ample in Sections 7 and 8. Some physical constraint
(e.g., height of a levee) or a date in time (schedule
overrun) may be other factors influencing selection
of 

 

b

 

. The use of another conditional expected value,

 

conditioned on the outcome falling in the upper 100
(1 

 

2

 

 

 

a

 

) percent tail of the cumulative probability dis-
tribution of outcomes (rare event)

 

, will be addressed in
the companion paper in this issue (Frohwein 

 

et al.

 

 2000).
The use of conditional expected values as a mea-

sure of the risk of extreme events in MODT analysis
presents a challenge because conditional expected
values cannot be optimized by the well-known method
(Raiffa 1968, Clemen 1996) of averaging out and
folding back (Haimes 

 

et al.

 

 1990, Haimes 1998). This
paper develops an approach for sequential optimiza-
tion of conditional expected values in MODT analy-
sis, conditioned on the magnitude of the outcome ex-
ceeding a threshold 

 

b

 

.
The conditional expected value considered in

this paper does not account for the probability of ex-
periencing an extreme event with a magnitude of at
least 

 

b

 

. It may be argued that a decision maker would
be interested not only in knowing (and minimizing)
the conditional expected outcome, given that an ex-
treme event occurs, but also in knowing the probabil-
ity of such an event occurring. However, no single
measure can capture all the facets of the risk of ex-
treme events, and a decision maker concerned with
the risk of extreme events could indeed be interested
in the conditional expected outcome. This informa-
tion will typically be used in conjunction with other
data, among them the probability of experiencing an
extreme event. Thus, although it is not claimed that
the conditional expected value is the sole and com-
prehensive measure of the risk of extreme events, it
does offer insight on one facet of risk. For the use of
conditional expected values as a measure of the risk
of extreme events, see for example, Asbeck and
Haimes (1984). Glickman and Sherali (1991), Karls-
son and Haimes (1988, 1989), Lambert 

 

et al.

 

 (1994),
Mitsiopoulos 

 

et al.

 

 (1991), Sherali 

 

et al.

 

 (1997), and Si-

vakumar 

 

et al.

 

 (1993, 1995). Erkut (1995) and Thomp-
son 

 

et al.

 

 (1997) voice some critiques on the use of
conditional expected values as objective functions.

The paper is organized as follows. First, differ-
ences between SODTs and MODTs are highlighted.
Then, the obstacle to averaging out and folding back
conditional expected values in decision trees is dis-
cussed. Next, the central insight from multiobjective
optimization that enables folding back and averaging
out of the risk of severe events is developed. It is seen
that some policies can be eliminated at intermediate
nodes of the decision tree. In the subsequent section,
the idea is extended to multiple objectives. The opti-
mization process is summarized and depicted in a
flowchart. Then, an example is provided, followed by
some concluding remarks.

 

2. BACKGROUND: SINGLE- VS. 
MULTIPLE-OBJECTIVE DECISION TREES

 

The reader is assumed to be familiar with SODTs
and the folding-back-and-averaging-out procedure
typically used to solve them. Averaging out and fold-
ing back, by eliminating inferior policies at interme-
diate nodes, avoids the need to enumerate and evalu-
ate all possible policies. An MODT has the same
general structure as an SODT. Folding back and av-
eraging out for MODTs differs from the process used
for SODTs in the following ways (for more details,
see Haimes 1998, Haimes 

 

et al.

 

 1990, and Haimes and
Li 1990). In an MODT, not scalar values but rather
n-dimensional vectors are folded back and averaged
out, using the multiobjective principle of optimality
(Li and Haimes 1987). The elements of the vectors
denote the outcomes associated with each terminal
node with respect to n objectives: for n 

 

5

 

 1, the
MODT becomes an SODT. In an MODT, the con-
cept of optimality is replaced by that of efficiency. An
efficient, or Pareto-optimal, vector in multiobjective
optimization cannot be improved upon in any single
dimension of performance without a corresponding
degradation in other dimensions. At decision nodes,
more than one vector may be efficient (as opposed to

 

one

 

 optimal solution in an SODT)—all efficient vec-
tors have to be retained and carried back through the
decision tree. Consequently, more than one efficient
vector may be associated with a node or branch (as
opposed to just one scalar value per node or branch
in an SODT). At chance nodes, every vector associ-
ated with one branch has to be averaged out with
every vector associated with the other branches. For
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example, if three branches emanate from a chance
node, and three efficient vectors are associated with
each branch, then 3 

 

3

 

 3 

 

3

 

 3 

 

5

 

 27 averaging-out calcu-
lations have to be performed. Subsequently, noneffi-
cient vectors are discarded from the set of averaged-
out vectors—the remaining vectors are further carried
through the decision tree. The result at the root node
of the MODT is the set of efficient solutions (poli-
cies), represented by vectors, to the multiobjective,
multistage decision problem (as opposed to the one
optimal solution to the single-objective, multistage
problem in an SODT).

 

3. PROBLEMS WITH AVERAGING OUT
AND FOLDING BACK CONDITIONAL
EXPECTED VALUES IN DECISION TREES

 

The conditional expected value, as a function of
the chosen policy s, can be expressed as

f

 

4,

 

b

 

 (s) 

 

5

 

 E[X | X 

 

$

 

 

 

b

 

; s], (1)

where X is a random variable and the damage 

 

b

 

 indi-
cates the decision maker’s threshold of concern with
severe events. The notation “f

 

4,

 

b

 

” for the conditional
expected value follows previous papers on the topic
of conditional expected values as a measure of the
risk of extreme events (Asbeck and Haimes 1984,
Haimes 

 

et al.

 

 1990). Averaging out and folding back
the conditional expected value f

 

4,

 

b

 

 cannot be accom-
plished in the same manner as for the unconditional
expected value. The unconditional expected value
E[X] associated with a chance node is calculated as
the weighted average

E[X] 

 

5

 

 p

 

1

 

 E[X

 

1

 

] 

 

1

 

 . . . 

 

1

 

 p

 

n

 

 E[X

 

n

 

], (2)

where the E[X

 

i

 

] denote the expected values associ-
ated with the n branches emanating from the chance
node and the p

 

i

 

 denote the branch probabilities.
However, it is easy to verify that the conditional ex-
pected value E[X | X 

 

$

 

 

 

b

 

] cannot be calculated as a
weighted average, i.e.,

E[X | X 

 

$

 

 

 

b

 

] 

 

Þ

 

 p

 

1

 

 E[X

 

1

 

 | X

 

1

 

 

 

$

 

 

 

b

 

] 

 

1 

 

. . . 

 

1

 

 p

 

n

 

 E[X

 

n

 

 | X

 

n

 

 

 

$

 

;

 

b

 

]. (3)

Haimes 

 

et al.

 

 (1990) first identified this difficulty,
which is ascribed to the nonseparability and non-
monotonicity of conditional expected values. Uncon-
ditional expected values, on the other hand, are sep-

arable and monotonic. See, e.g., Li (1990) for a
definition of separability and monotonicity.

 

Proposition 

 

1

 

.

 

(Li 1990) An objective function can be
optimized by using the averaging-out and fold-
ing-back approach in a decision tree if and only
if it is separable and monotonic.

For the developments in this paper it is impor-
tant to keep in mind that 

 

unconditional

 

 expected val-
ues 

 

can

 

 be averaged out and folded back in decision
trees, whereas 

 

conditional

 

 expected values 

 

cannot.

 

One way to circumvent the requirement of sepa-
rability and monotonicity is to not use a decision-tree
approach but rather to explicitly enumerate 

 

all

 

 poli-
cies, i.e., all paths through the tree. This results in de-
termining the mixture distribution of the outcome
and calculating the value of the objective function for

 

each

 

 policy in order to identify the optimal policy.
However, using a decision-tree approach may be
preferable because—depending on the problem
structure—it may save effort by sequential elimina-
tion of inferior (sub) policies.

This paper presents a method for overcoming
the problem of nonseparability and nonmonotonicity
of the conditional expected value f

 

4,

 

b

 

 and thus en-
abling the elimination, at intermediate nodes of the
decision tree, of some policies that are inferior with
respect to the risk of severe events, as measured by
the conditional expected value f

 

4,

 

b

 

.

 

4. OVERCOMING THE NONSEPARABILITY 
OF THE CONDITIONAL EXPECTED 
VALUE F

 

4,

 

B

 

The central insight that helps to overcome the
difficulties with folding back the conditional expected
value is that f

 

4,

 

b

 

 is 

 

second-order separable.

 

 The idea of
k-th order separability has been developed by Li
(1990) and Li and Haimes (1990, 1991) for dynamic
programming (also see Geoffrion (1967) for static de-
cision problems). This expresses a nonseparable mea-
sure of performance (objective function) J as a func-
tion of at least k separable and monotonic measures
of performance J

 

i

 

(i 

 

5

 

 1, . . . , k), where the overall per-
formance index J is either a strictly increasing or a
strictly decreasing function of each J

 

i

 

. In other words,
using k-th order separability, a measure of perfor-
mance that 

 

does not

 

 average out and fold back (such
as the 

 

conditional

 

 expected value) is expressed as a
strictly increasing or decreasing function of k mea-
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sures of performance that 

 

do

 

 (such as 

 

unconditional

 

expected value). The k separable and monotonic per-
formance indices can serve as k objectives in a multi-
objective dynamic program or a multiobjective deci-
sion tree, which can be solved by using the
multiobjective principle of optimality (Li and Haimes
1987).

 

Proposition 

 

2

 

.

 

(Li 1990) When k-th order separabil-
ity holds, the optimal policy of the original, non-
separable problem is contained in the set of effi-
cient policies of the modified multiobjective
problem at the root node of the decision tree.

Now, define

 

f

 

4,

 

b

 

 

 

;

 

 P(X 

 

$

 

 

 

b

 

) 

 

5

 

 E[1

 

(x

 

$b

 

)

 

] (4)

and

f

 

4,

 

b

 

* 

 

;

 

 

 

f

 

4,

 

b

 

f

 

4,

 

b

 

 

 

5

 

 

 

f

 

4,

 

b

 

?

 

E[X | X 
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b

 

] 

 

5

 

 E[X

 

?

 

1

 

(x

 

$b

 

)

 

], (5)

where the indicator function is defined as

(6)

 

Corollary 

 

1

 

. The policy with the minimal conditional
expected value f4,b is contained in the set of effi-
cient, non-f4-convex-dominated policies with re-
spect to the multiobjective minimization of the
measure of performance f4,b* and maximization
of the measure of performance f4,b (or minimiza-
tion of -f4,b) at the root node of the decision tree.

Corollary 1 is developed as follows. The condi-
tional expected value f4,b is second-order separable
because it can be expressed as

(7)

The function f4,b*, the partial expected value
(Thompson et al. 1997), is the contribution of the out-
comes in the range [b, ¥) to the overall expected
value E[X] of the outcome, and f4,b is simply the
probability of observing an outcome in the range [b, ¥).
Both f4,b* and f4,b, as expected values, are separable
and monotonic and can consequently be averaged
out and folded back in a decision tree (Proposition 1).
Moreover, the conditional expected value f4,b is strictly
increasing in f4,b* and strictly decreasing in f4,b. Thus,
with Proposition 2 it results that the policy with the
minimum value of f4,b is contained in the set of effi-
cient policies with respect to min (f4,b*, 2f4,b). Fur-
ther, Frohwein (1999) shows that only non-f4-convex-
dominated, efficient policies are candidates for opti-
mality. Efficient, non-f4-convex-dominated policies

1 x$b( )

1 x $ b,

0 x b,,î
í
ì

5

f4 b,
f4 b,

*

f4 b,

---------5

are not dominated by a convex combination of two
other efficient policies with respect to min (f4,b*,
2f4,b). Corollary 1 results.

5. EXTENSION TO MULTIPLE OBJECTIVES

The k-th order separability, as presented in Li
(1990) and Li and Haimes (1990, 1991), applies to a
case where it is assumed that only a single objective is
to be optimized—this is k-th order separable (k . 1).
This objective is substituted by k separable and
monotonic objectives, which are then optimized in a
multiobjective framework. The conditional expected
value f4,b, however, will generally not be the sole ob-
jective to be optimized. Rather, in addition to the se-
vere damage, the decision maker will often be con-
cerned with the unconditional expected damage, the
cost of implementing a given policy, or both. There-
fore, the concept of k-th order separability must also
apply to the multiobjective case, i.e., to situations
where there are (n 1 1) objectives to be optimized,
one being k-th order separable (k . 1, whereas k 5 1
for the remaining objectives). In the case of one k-th
order separable objective among (n 1 1) objectives,
the modified, separable problem description has no
longer (n 1 1) but rather (n 1 k) objectives.

Proposition 3. The efficient policies with respect to
the (n 1 1)-objective optimization of a k-th order
separable objective, along with n other, separa-
ble objectives, are contained in the set of efficient
policies with respect to the (n 1 k)-objective
optimization of the k substitute, separable objec-
tives, along with the n other objectives.

A proof of Proposition 3 is provided in Froh-
wein (1999). Corollary 2 results directly along with
Corollary 1.

Corollary 2. The efficient policies with respect to the
multiobjective optimization of the conditional
expected value f4,b and other objectives are con-
tained in the set of efficient, non-f4-convex-
dominated policies with respect to min (f4,b*, 2f4,b)
and the optimization of the other objectives at
the root node of the decision tree.

Therefore, in a sequential decision problem, where
the minimization of the conditional expected value f4,b is
just one of several objectives, f4,b can justifiably be re-
placed by the substitute objectives f4,b* and f4,b in order
to construct a separable problem description.
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6. OPTIMIZATION PROCEDURE

The optimization procedure is depicted in Fig. 1.
The original problem is minimizing the conditional
expected value f4,b, typically along with minimizing n
additional objectives (that average out and fold
back), in a multistage decision. The values for the
(n 1 1) objectives are assessed for the terminal
chance nodes and recorded in vector form. In the
manner described previously, f4,b is broken up into
the two constituents of risk of extreme events; i.e.,
the partial expected value f4,b* and the exceedance
probability f4,b are calculated for the terminal chance
nodes and replace f4,b in the objective-vector. The
(n 1 2)-dimensional objective-vectors are then aver-
aged out and folded back in the multiobjective deci-
sion tree, thereby eliminating inferior as well as
f4-convex-dominated vectors at intermediate deci-
sion and chance nodes, as explained previously. This
results in the identification of a set of efficient objec-
tive-value vectors, each representing a policy, for the
multistage, (n 1 2)-objective problem of minimizing
f4,b*, 2f4,b, and the n other objectives at the root node
of the decision tree. These vectors are reconverted to
the original format, i.e., to the conditional expected
value f4,b (f4,b 5 f4,b*/f4,b) along with the n additional
objectives. The vectors that remain efficient after the
conversion represent the complete set of efficient pol-
icies for the original multistage, (n 1 1)-objective
problem of minimizing f4,b and the n additional objec-
tives (Corollary 2).

7. EXAMPLE (SINGLE OBJECTIVE)

The following example illustrates the minimiza-
tion of the conditional expected cost f4,b of a construc-
tion project, where b is the budget allocated to the
project. Thus, in this example, a cost overrun consti-
tutes a severe event. In an elaboration, the minimiza-
tion of the expected construction time is added as a

second objective. The entire sequential decision prob-
lem is given in the decision tree of Fig. 2.

A local department of transportation (DOT) is
planning to make changes to one of the intersections
in its district as a reaction to increased traffic and ac-
cident counts. The DOT is concerned with the risk of
exceeding the budgeted construction cost and would
like to identify the design option with the lowest con-
ditional expected construction cost, given that the cost
exceeds $30 million, the budgeted amount. Several
design options have been considered for implementa-
tion and have undergone preliminary studies. As
planning progresses, limited resources available al-
low only for parallel planning of a subset of these de-
sign options. Later, implementation of a design is lim-
ited to an alternative from the chosen subset.

Four design options (D1 through D4) are consid-
ered for further study and later implementation.
There are three stages of decision making: the plan-
ning phase, the design phase, and the construction
phase. In the planning phase, two of the four layouts
(D1 and D2, or D3 and D4) have to be chosen for fur-
ther studying. In the design phase, it has to be decided
whether to design the two previously chosen intersec-
tion layouts for low or for high traffic volume (it is as-
sumed that both layouts have to be designed for the
same traffic load as a result of limited designing re-
sources). Finally, in the construction phase, one of the
two previously chosen layouts has to be selected for
implementation. In Fig. 2, the terminal chance nodes
describe the probability distributions of the construc-
tion costs. Table I defines which nodes stand for which
design options, along with the assumed values of the
partial expected cost f4,b* and the exceedance proba-
bility f4,b for b 5 $30 million. Each design option ap-
pears twice in the decision tree, once for a “with,” once
for a “without growth tax” scenario (see following).

If, at the beginning of the design phase, the
DOT has chosen to pursue the low-traffic version of
a given design option (denoted by subscript “low”),
then some costly last minute changes have to be
made to the design to accommodate higher traffic
volumes if a new subdivision will be developed close
to the intersection, thus impacting traffic load (de-
sign options denoted by subscript “low_modified”).
The decision about the subdivision development is
expected after the design phase has begun but before
construction starts. Thus, at the beginning of the de-
sign phase, the DOT can choose between designing
for high traffic volumes (subscript “high”) or design-
ing for low volumes and risking necessary last-
minute changes. In terms of construction costs, the

Fig. 1. Flowchart of optimization process for f4,b.
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Fig. 2. Decision tree for highway capacity extension.
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“high” design options can be expected to be more
costly than the respective “low” design options,
whereas the “low modified” design options will be
more costly than the “high” options.

The probability of the subdivision being devel-
oped is influenced by both the DOT’s decision for
pursuing planning on a particular subset of intersec-
tion layouts (D1, D2 vs. D3, D4) and the Community
Board of Advisors’ (CBOA) decision, expected dur-
ing the design phase, whether to institute a growth
tax, which would discourage development in the
community. The CBOA’s decision is also thought to
be influenced by the DOT’s selection of which inter-
section layouts to pursue in planning, given that par-
ticular layouts may be more or less suitable for higher
traffic loads. The assumed probabilities for the CBOA’s
and the developer’s decisions are indicated in Fig. 2.

The policy with minimal value of f4,b is among the
efficient, non-f4-convex-dominated policies with re-
spect to min (f4,b*, 2f4,b) at the root node of the deci-
sion tree by Corollary 1. The values of f4,b* and f4,b

can be assessed in a variety of ways, such as based on
empirical probability distributions for the construc-
tion cost drawn from experience with similar earlier
projects, or direct expert estimation. Once the values
of f4,b* and f4,b have been identified for all design
options (i.e., all terminal chance nodes), the averaging-
out-and-folding-back process can begin—it is docu-
mented in Tables II through V. In these tables, effi-
cient, non-f4-convex-dominated policies are indicated
in bold print, other efficient policies in italic print,
and nonefficient policies in regular print. Only effi-
cient, non-f4-convex-dominated policies are folded
back to the preceding stage in the decision tree. In
Tables II through V, (sub) policies are denoted by the

various chance and decision nodes that lie on the path
prescribed by the policy; however, chance nodes 2.1
through 2.4 and decision nodes E through P are not
included in order to somewhat shorten the notation.
For example, “(1.2 ((C, (3.13, 3.16)), (D, (3.19,
3.21))))” is interpreted as follows: “Choose the path
via node 1.2 by selecting design options D3 and D4
for the planning phase. If decision node C is reached

Table I. Design Options and Associated Severe-Event 
Data for b 5 $30 Million—Single Objective

Subtree root Design
f4,b* 

($ million) f4,b

f4,b 
($ million)

3.1 / 3.7 D1low_modified 12.5 0.25 50.0
3.2 / 3.8 D2low_modified 18.0 0.26 69.23
3.3 / 3.9 D1low 4.6 0.14 32.86
3.4 / 3.10 D2low 3.6 0.11 32.73
3.5 / 3.11 D1high 7.7 0.21 36.67
3.6 / 3.12 D2high 8.2 0.19 43.16
3.13 / 3.19 D3low_modified 12.0 0.3 40.0
3.14 / 3.20 D4low_modified 14.0 0.3 46.67
3.15 / 3.21 D3low 3.1 0.1 31.0
3.16 / 3.22 D4low 1.57 0.05 31.4
3.17 / 3.23 D3high 7.0 0.2 35.0
3.18 / 3.24 D4high 5.0 0.125 40.0

Table II. Averaging Out at Chance Nodes 2.1
through 2.4—Single Objective

Subtree root Policy
f4,b* 

($ million) f4,b

2.1 (3.1, 3.3) 10.13 0.217
(3.1, 3.4) 9.83 0.208
(3.2, 3.3) 13.98 0.224
(3.2, 3.4) 13.68 0.215

2.2 (3.7, 3.9) 7.76 0.184
(3.7, 3.10) 7.16 0.166
(3.8, 3.9) 9.96 0.188
(3.8, 3.10) 9.36 0.170

2.3 (3.13, 3.15) 7.55 0.2
(3.13, 3.16) 6.785 0.175

2.4 (3.19, 3.21) 3.99 0.12
(3.19, 3.22) 2.613 0.075

Note: Efficient, non-f4-convex dominated policies are indicated in
bold print, and nonefficient policies in regular print.

Table III. Folding Back to Decision Nodes 
A through D—Single Objective

Subtree root Policy
f4,b*

($ million) f4,b

A (3.1, 3.3) 10.13 0.217
(3.1, 3.4) 9.83 0.208
(3.2, 3.3) 13.98 0.224
(3.5) 7.7 0.21

B (3.7, 3.9) 7.76 0.184
(3.7, 3.10) 7.16 0.166
(3.8, 3.9) 9.96 0.188
(3.11) 7.7 0.21

C (3.13, 3.15) 7.55 0.2
(3.13, 3.16) 6.785 0.175
(3.17) 7.0 0.2
(3.18) 5.0 0.125

D (3.19, 3.21) 3.99 0.12
(3.19, 3.22) 2.613 0.075
(3.23) 7.0 0.2
(3.24) 5.0 0.125

Note: Efficient, non-f4-convex-dominated policies are indi-
cated in bold print, other efficient policies in italic print, and
nonefficient policies in regular print.
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because the growth tax is rejected, then plan for low
traffic volume and select terminal chance node 3.13
(D3low_modified) if the neighborhood will be developed,
and select chance node 3.16 (D4low) if the neighbor-
hood will not be developed. If decision node D is
reached because the growth tax is instituted, then
plan for low traffic volume and select terminal chance
node 3.19 (D3low_modified) if the neighborhood will be
developed, and select chance node 3.21 (D3low) if the
neighborhood will not be developed.”

Seven efficient, non-f4-convex-dominated poli-
cies (with respect to min (f4,b*, 2f 4,b )) out of a total
of 72 policies are eventually folded back to the root
node R (Table V) and need to be screened at the root
node for the minimal value of the conditional ex-
pected value f4,b 5 f4,b*/f4,b. The lowest value ($34.34
million) is found for policy (1.2 ((C, (3.17)), (D, (3.19,

3.21)))). By Corollary 1, this is the lowest conditional
expected cost for any policy.

8. EXAMPLE (EXTENSION TO 
MULTIPLE OBJECTIVES)

The example is extended from one objective
(minimizing the conditional expected cost f4,b) to
two objectives, i.e., minimizing the conditional ex-
pected value f4,b of cost and minimizing the ex-
pected construction time t (in months). The as-
sumed construction times for the different design
options are listed in Table VI. The averaging-out-
and-folding-back procedure and the elimination of
inferior policies are carried out as discussed previ-
ously but now with respect to min (f4,b*, 2f4,b, t)
(Corollary 2), rather than only min (f4,b*, 2f4,b).
The result at the root node is shown in Table VII.
Because fewer policies can be eliminated at inter-
mediate nodes as a result of the additional objec-
tive, there are 14 efficient, non-f4-convex-domi-
nated policies with respect to min (f4,b*, 2f4,b, t) out
of a total of 72 policies. After the conversion of the
objective-value vectors for these 14 policies from
the format {f4,b*, f4,b, t} to {f4,b, t}, two policies are
found to be efficient with respect to min (f4,b, t).
They are (1.2 ((C, (3.17)), (D, (3.19, 3.21)))) and
(1.2 ((C, (3.17)), (D, (3.20, 3.21))))—see Table VII.
By Corollary 2, these are the only two policies that
are efficient with respect to min (f4,b, t) among all
the policies.

9. CONCLUDING REMARKS

This paper has presented an approach for se-
quential decision making when one of the objectives

Table IV. Averaging Out at Chance Nodes 
1.1 and 1.2—Single Objective

Subtree 
root Policy

f4,b*
($ million) f4,b

1.1 ((A,(3.1, 3.3)), (B, (3.7, 3.10))) 9.239 0.2017
((A,(3.1, 3.3)), (B, (3.11))) 9.401 0.2149
((A, (3.2, 3.3)), (B, (3.7, 3.10))) 11.934 0.2066
((A, (3.2, 3.3)), (B, (3.11))) 12.096 0.2198
((A, (3.5)), ((B, (3.7, 3.10))) 7.538 0.1968
((A, (3.5)), ((B, (3.11))) 7.7 0.21

1.2 ((C, (3.17)), (D, (3.19, 3.21))) 5.495 0.16
((C, (3.17)), (D, (3.19, 3.22))) 4.8065 0.1375
((C, (3.17)), (D, (3.23))) 7.0 0.2
((C, (3.18)), (D, (3.19, 3.21))) 4.495 0.1225
((C, (3.18)), (D, (3.19, 3.22))) 3.8065 0.1
((C, (3.18)), (D, (3.23))) 6.0 0.1625

Note: Efficient, non-f4-convex-dominated policies are indi-
cated in bold print, other efficient policies in italic print, and
nonefficient policies in regular print.

Table V. Folding Back to Root Node R—Single Objective

Policy
f4,b* 

($ million) f4,b

f4,b 

($ million)

(1.1 ((A, (3.1, 3.3)), (B, (3.11)))) 9.401 0.2149 43.75
(1.1 ((A, (3.2, 3.3)), (B, (3.11)))) 12.096 0.2198 55.03
(1.1 ((A, (3.5)), ((B, (3.7, 3.10)))) 7.538 0.1968 —
(1.1 ((A, (3.5)), ((B, (3.11)))) 7.7 0.21 36.67
(1.2 ((C, (3.17)), (D, (3.19, 3.21)))) 5.495 0.16 34.34
(1.2 ((C, (3.17)), (D, (3.19, 3.22)))) 4.8065 0.1375 34.96
(1.2 ((C, (3.17)), (D, (3.23)))) 7.0 0.2 35.0
(1.2 ((C, (3.18)), (D, (3.19, 3.22)))) 3.8065 0.1 38.07

Note: Efficient, non-f4-convex dominated policies are indicated in bold print, and nonefficient
policies in regular print.



Extreme Events in Decision Trees, Part 1 121

is minimizing the risk of severe events. The approach
overcomes the nonseparability of the conditional ex-
pected value, conditioned on the outcome magnitude
exceeding a fixed threshold, by expressing it as a strictly
increasing function of two separable and monotonic
measures of performance, the partial expected value
f4,b* and the negative exceedance probability 2f4,b.
These can be averaged out and folded back in a multi-
objective decision tree, where inferior (sub) policies
are eliminated from further consideration at interme-
diate nodes.

Examples of the single- and multiple-objective
optimization of the conditional expected construc-
tion cost f4,b (and an additional objective) have been

given. In both cases, the number of candidates for the
optimal or efficient policies has been largely reduced
sequentially through the decision-tree approach pre-
sented in this paper.

Not only does the proposed method enable the
sequential optimization of the risk of extreme events,
as measured by f4,b, but it also provides a new interpre-
tation of the conditional expected value f4,b. In fact,
the minimal value of the conditional expected value
f4,b can be interpreted as the optimal ratio of the con-
tribution of severe events to the expected outcome,
f4,b* 5 P(X $ b) E[X | X $ b], and the probability of
observing a severe outcome f4,b 5 P(X $ b). Both f4,b*
and f4,b also can be considered, in their own rights, as
measures of the risk of severe events. The results de-
veloped here for the conditional expected value f4,b

have general importance for risk analysis. In fact, the
findings presented in this paper suggest an interpreta-
tion and optimization of nonseparable, nonmonotonic
measures of the risk of extreme events—in addition to
conditional expected values, e.g., variance, 95th per-
centile—in terms of two or more underlying measures
of the risk of extreme events that are separable and
monotonic and thus average out and fold back.

The capability of employing the standard aver-
aging-out-and-folding-back procedure (to f4,b* and
f4,b) is not obtained without a price because the di-
mensionality of the problem description increases by
one, which will also increase the computational bur-
den of the optimization. Thus, considering some ex-
isting techniques and extensions to reduce the effi-

Table VI. Design Options and Associated Severe-Event
Data for b 5 $30 million—Multiple Objectives

Subtree 
root Design

f4,b*
($ million) f4,b

f4,b

($ million)
t

(months)

3.1 / 3.7 D1low_modified 12.5 0.25 50.0 10.0
3.2 / 3.8 D2low_modified 18.0 0.26 69.23 9.0
3.3 / 3.9 D1low 4.6 0.14 32.86 7.0
3.4 / 3.10 D2low 3.6 0.11 32.73 8.0
3.5 / 3.11 D1high 7.7 0.21 36.67 8.0
3.6 / 3.12 D2high 8.2 0.19 43.16 8.5
3.13 / 3.19 D3low_modified 12.0 0.3 40.0 8.5
3.14 / 3.20 D4low_modified 14.0 0.3 46.67 8.0
3.15 / 3.21 D3low 3.1 0.1 31.0 6.5
3.16 / 3.22 D4low 1.57 0.05 31.4 6.5
3.17 / 3.23 D3high 7.0 0.2 35.0 7.0
3.18 / 3.24 D4high 5.0 0.125 40.0 7.5

Table VII. Folding Back to Root Node R—Multiple Objectives

Policy
f4,b* 

($ million) f4,b

t
(months)

f4,b*
($ million)

(1.1 ((A, (3.1, 3.3)), (B, (3.11)))) 9.401 0.2149 8.77 43.75
(1.1 ((A, (3.2, 3.3)), (B, (3.8, 3.9)))) 12.774 0.2132 8.22 59.92
(1.1 ((A, (3.2, 3.3)), (B, (3.11)))) 12.096 0.2198 8.28 55.03
(1.1 ((A, (3.5)), ((B, (3.7, 3.10)))) 7.538 0.1968 8.24 —
(1.1 ((A, (3.5)), ((B, (3.8, 3.9)))) 8.378 0.2034 7.94 41.19
(1.1 ((A, (3.5)), ((B, (3.11)))) 7.7 0.21 8.0 36.67
(1.2 ((C, (3.17)), (D, (3.19, 3.21)))) 5.495 0.16 7.25 34.34
(1.2 ((C, (3.17)), (D, (3.19, 3.22)))) 4.8065 0.1375 7.25 34.96
(1.2 ((C, (3.17)), (D, (3.20, 3.21)))) 5.595 0.16 6.825 34.97
(1.2 ((C, (3.17)), (D, (3.20, 3.22)))) 4.9065 0.1375 6.825 35.68
(1.2 ((C, (3.17)), (D, (3.23)))) 7.0 0.2 7.0 35.0
(1.2 ((C, (3.18)), (D, (3.19, 3.21)))) 4.495 0.1225 7.5 36.69
(1.2 ((C, (3.18)), (D, (3.19, 3.22)))) 3.8065 0.1 7.5 38.07
(1.2 ((C, (3.18)), (D, (3.20, 3.21)))) 4.595 0.1225 7.075 37.51
(1.2 ((C, (3.18)), (D, (3.20, 3.22)))) 3.9065 0.1 7.075 39.07

Note: Efficient, non-f4-convex dominated policies are indicated in bold print, and nonefficient
policies in regular print.
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cient set of policies at intermediate nodes may be
worthwhile. Screening methods can be considered,
which thin the efficient frontier by retaining only
some “representative” policies (see, for example,
Graves et al. 1992), and developments such as gener-
alized dynamic programming, which uses “local pref-
erences” to identify efficient (sub) policies that can-
not possibly be part of efficient overall policies (see,
for example, Carraway and Morin 1988). The so-
called curse of dimensionality, however, is not unique
to the control of the risk of extreme events and is be-
yond the scope of the present work. Difficulties
unique to the proposed approach should not arise
when adopting the mentioned techniques.

In the companion paper (Frohwein et al. 1999),
a method is developed to fold back in decision
trees an approximate measure of the risk of rare
events (as opposed to severe events in this paper)
that makes use of some results from the statistics of
extremes.

Extreme events often have an impact on deci-
sion making that cannot appropriately be captured
by the standard unconditional expected value. How-
ever, techniques that address decision making in the
face of extreme events remain scarce, and the area of
sequential (dynamic) decision making in this domain
is particularly underdeveloped. It is believed that the
developments presented in this paper, particularly
the separation of the risk of extreme events into two
constituent elements of risk, can contribute to this
important but still emerging area in the domain of de-
cision analysis.
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APPENDIX: NOTATION

[b, ¥) Set of real numbers, (only) including
the values b and larger

b Decision maker’s outcome threshold of
concern

f4,b Probability of outcome X at least attain-
ing threshold b, f4,b ; P(X $ b)

1(x$b) Indicator function, 1(x $ b)

 
5

1 x b$,
0 x b,,î

í
ì

E[?] Expected value
E[? |condition] Conditional expected value, given

some condition
f(?) Probability density function

F(?) Cumulative probability distribution func-
tion

f4,b Conditional expected value of outcome
X, given that the magnitude of the out-
come attains at least the threshold b,
f4,b ; E[X | X $ b]

f4,b* Partial expected value of outcome X,
given that the magnitude of the outcome
attains at least the threshold b,
f4,b* ; f4,b?E[X | X $ b]

i Index
J, Ji Measure of performance (objective func-

tion)
k Order of separability

maxi {arg} Select i such that the argument arg,
which changes with i, is maximized

min Minimize
min (?, ?), min (?, ?, ?) Multiobjective minimization

with respect to two (three) objectives
s Policy (at root node of decision tree)
t Time (in months)
x Realization of X, outcome (cost, dam-

age)
X, Xi Random variable (outcome)
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