英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

Mobile Communication Networks [16]

论文作者:www.51lunwen.org论文属性:学期论文 termpaper登出时间:2014-05-31编辑:lzm点击率:19328

论文字数:10545论文编号:org201405302339058373语种:英语 English地区:中国价格:免费论文

关键词:Implementation WorkMobile Communication Networks移动通信移动无线网络communication protocols

摘要:Any node can receive a lot of information about the network by placing its interface into promiscuous mode. The information the node can receive can be used to build trust levels for different modes.

ge so that an agent can weigh up the costs and benefits that a particular situation holds. Importance caters for the significance of a particular situation to the thruster based upon time.

We merge the utility and importance of a situation into a single variable called weight, which is variable and increases or decreases with time. In our model we make use of trust agents that we suppose to reside on all network nodes.

Each agent operates independently and maintains its individual trust statistics. The duty of the agent is to gather data from all previous events in all states, filters it, assigns weights to each event and computes different trust levels based upon them.

Each node basically performs the following three functions:
Trust Derivation
Trust Quantification
Trust Computation

5.2.1 Trust Derivation

We compute the trust in our model based upon the information that one node can gather about the other nodes. Node gathers information about other nodes in the network in passive mode i.e. without requiring any special interrogation packets. Vital information regarding other nodes can be gathered by analyzing the received, forwarded and overheard packets. In passive mode, the possible events that can be recorded are:

i. Data packets forwarded

ii. Control packets forwarded

iii. Data packets received

iv. Control packets received

v. Data packets precision

vi. Control Packets precision

The information from these events is classified into one or more trust categories. Trust categories signify the specific aspect of trust that is relevant to a particular application. For example, we might trust a particular node for the category “data forwarding” but not for the category of “Accurate Data Reception”.

5.2.2 Trust Quantification

Secure routing protocols represent trust levels by either the presence of security or its absence. We don’t have others options regarding trust in routing. Trust in ad-hoc networks is always in a fluid state and is continuously changing due to the mobility of the nodes. As the period of interaction with any node may be brief, it is imperative that the trust be represented as a continual range to differentiate between nodes with comparable trust levels. The better idea would have to represent trust from –1 to +1 signifying a continuous range from complete distrust to complete trust. So the trust value would have to be stored in a floating point variable. But as we know that in ad hoc networks battery life (energy) is very precious. We can’t use much of floating point variables because floating point calculation is a processing overhead: which is undesirable. So instead we use an integer value to store our results and do integer calculations.

5.2.3 Trust Computation

Trust computation involves an assignment of weights (utility/importance factor) to the events that were monitored and quantified. The assignment is totally dependent on the type of application demanding the trust level and varies with state and time. All nodes dynamically assign these weights based upon their own criteria and circumstances. For example for a particular node at a certain time control packets may be more important than data packets. So control packets with be assigned more weight than data pa论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。
英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非