英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

Mobile Communication Networks [4]

论文作者:www.51lunwen.org论文属性:学期论文 termpaper登出时间:2014-05-31编辑:lzm点击率:19161

论文字数:10545论文编号:org201405302339058373语种:英语 English地区:中国价格:免费论文

关键词:Implementation WorkMobile Communication Networks移动通信移动无线网络communication protocols

摘要:Any node can receive a lot of information about the network by placing its interface into promiscuous mode. The information the node can receive can be used to build trust levels for different modes.

zed Link State Routing (OLSR)
Topology Dissemination Based on Reverse-Path Forwarding

2.2 MANET routing protocols:

As mentioned earlier, three proposed protocols have been accepted as experimental RFCs by the IETF and two of them have been presented here. Both of them are based on widely used algorithms from Internet routing. AODV uses the principals from Distance Vector routing (used in RIP) and OLSR uses principals from Link State routing (used in OSPF). The 3rd approach known as Hybrid Protocol combines the strength of both proactive and reactive schemes.

2.2.1 Reactive protocols - AODV

Reactive protocols seek to set up routes on-demand as in advance the route is not known. In the same way as mentioned above, the whole network is not known to all nodes in advance. So when a node wants to communicate with an-other node to which the route is not defined. Then the route to the destination node is established by the routing protocol. There can be a delay at the start of communication. Where the delay is not desirable one should not use the Reactive routing protocol e-g military applications etc. However, it preserves the precious node battery.

The AODV routing protocol was described in RFC 3561. The idea in AODV is like all reactive protocols, is that it transmits the topology information by node but only on-demand. When a node wants to communicate to the host and if it has no route then the route request “RREQ” will be generated by it and it will be flooded in a limited way to other nodes. It will result in an initial delay and causes the control traffic overhead to be dynamic when initiating this kind of communication. When the RREQ message reaches to the destination or to the intermediate node that have valid route entry for the destination then the route is considered found. AODV remains passive as long as a route
Mobile Ad-hoc Working Group: Charles E. Perkins, Elizabeth M. Belding-Royer and Samir A. Das, “Ad-hoc On demand distance Vector Routing”.

There is a problem in the classical distance vector algorithm that is “counting to infinity” by using sequence numbers for all the routes, AODV avoids that. In the counting to infinity problem the nodes are updated by each other in a loop. Consider nodes N1, N2, N3 and N4 making up a MANET as illustrated in figure 2-2. N1 is not updated on the fact that its route to N4 via N3 is broken. This means that N1 has a registered route, with a metric of N2, to N4. N3 has registered that the link to N4 is down, so once node N2 is updated on the link breakage between N3 and N4, it will calculate the shortest path to N4 to be via N1 using a metric of 3. N3 receives information that N2 can reach N4 in 3 hops and updates its metric to 4 hops. N1 then registers an update in hop-count for its route to N4 via N3 and updates the metric to 5. So in this way they continue to increment the metric in a loop. This is the way that is avoided in AODV, for the example described, is by N2 noticing that N1’s route to N4 is old based on a sequence number. N2 will then discard the route and N3 will be the node with the most recent routing information by which N2 will update its routing table.

Mobile Ad-hoc Working Group: Charles E. Perkins, Elizabeth M. Belding-Royer and Samir A. Das, “Ad-hoc On demand distance Vector Routing”.

For flooding these messages AODV uses an expanding ring techni论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。

英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非