英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

Mobile Communication Networks [9]

论文作者:www.51lunwen.org论文属性:学期论文 termpaper登出时间:2014-05-31编辑:lzm点击率:19290

论文字数:10545论文编号:org201405302339058373语种:英语 English地区:中国价格:免费论文

关键词:Implementation WorkMobile Communication Networks移动通信移动无线网络communication protocols

摘要:Any node can receive a lot of information about the network by placing its interface into promiscuous mode. The information the node can receive can be used to build trust levels for different modes.

be done by the node “b” that is to be flooded.

OLSR routing protocol allows nodes to announce willingness to act as MPRs for neighbors. There are 8 levels of willingness the lowest one is WILL_NEVER (0) which means that this node will never be chosen as a MPR, and the highest one is WILL_ALWAYS (7), which means that this node will always be chosen as a MPR. Through Hello message the willingness is spread and when calculating the MPRs this information must be considered.

3.4.2 Forwarding OLSR traffic

Relaying of messages makes flooding in MANETS possible. OLSR specifies a default forwarding algorithm that uses the MPR information to flood packets. One is however free to make ones own rules for custom forwarding of custom messages. But all messages received that carries a type not known by the local node, must be forwarded according to the default forwarding algorithm. The algorithm can be outlined as:

1. If the link on which the message arrived is not considered symmetric, the message is silently discarded. To check the link status the link set is queried.

2. If the TTL carried in the message header is 0, the message is silently discarded.

3. If this message has already been forwarded the message is discarded. To check for already forwarded messages the duplicate set is queried.

4. If the last hop sender of the message, not necessarily the originator, has chosen this node as a MPR, then the message is forwarded. If not, the message is discarded. To check this, the MPR selector set is queried.

5. If the message is to be forwarded, the TTL of the message is reduced by one and the hop-count of the message is increased by one before broadcasting the message on all interfaces.

Figure: 3-5, Node A has selected the Black node as its MPR

The fact that all received unknown message types are forwarded using this approach makes flooding of special message-types possible even if these message-types are only known to a subset of the nodes.

Figures 3-3 and 3-4 shows the paths information is passed when being spread, first using regular flooding, then using MPR flooding. The number of retransmissions in a MPR scenario highly depends on the network topology and the MPR calculation algorithm. Using the same topology as in fig 3-2a, a possible MPR calculation could lead to the black nodes in fig 3-2b being chosen as MPRs by the center node. As one can see, if the center node is to flood a message throughout the network, 4 retransmissions are done using MPR as opposed to 24 using traditional flooding.

To be able to check if a message has already been retransmitted, a cache of recently processed and forwarded messages is maintained. The data stored is the minimum needed to identify the message. This means that the actual message content is not stored, but rather just originator address, message-type and sequence number. This data is cached for a constant time of DUP_HOLD_TIME suggested to be 30 seconds in the RFC. Every received message that is processed by the local node is registered in the duplicate set. If the message is forwarded, the duplicate-entry representing this message is updated accordingly; registering on what interfaces the message has been forwarded. Based on querying the duplicate set, a node can then keep track of already processed messages and already forwarded论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。
英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非