英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

数学建模论文之商业和工业应用随机模型:THE EFFECTS OF PRUNING METHODS ON THE PREDICTIVE ACCURACY OF INDUCED

论文作者:留学生论文论文属性:硕士毕业论文 thesis登出时间:2011-01-09编辑:anterran点击率:11816

论文字数:论文编号:org201101091240584472语种:英语论文 English地区:意大利价格:免费论文

附件:20110109124143977.pdf

关键词:Induction of decision treesDecision tree pruningState spaceCross-validation study数学建模论文商业和工业应用随机模型

APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY
Appl. Stochastic. Models Bus. Ind. 15, 277}299 (1999)
THE EFFECTS OF PRUNING METHODS ON THE PREDICTIVE ACCURACY OF INDUCED
DECISION TREES
FLORIANA ESPOSITO,s DONATO MALERBA, GIOVANNI SEMERARO AND
VALENTINA TAMMA
Dipartimento di Informatica, Universita` degli Studi di Bari, via Orabona 4, 70126 Bari - Italy
SUMMARY
Several methods have been proposed in the literature for decision tree (post)-pruning. This article presents
a unifying framework according to which any pruning method can be de"ned as a four-tuple (Space,
Operators, Evaluation function, Search strategy), and the pruning process can be cast as an optimization
problem. Six well-known pruning methods are investigated by means of this framework and their common
aspects, strengths and weaknesses are described. Furthermore, a new empirical analysis of the e!ect of
post-pruning on both the predictive accuracy and the size od induced decision trees is reported. The
experimental comparison of the pruning methods involves 14 datasets and is based on the cross-validation
procedure. The results con"rm most of the conclusions drawn in a previous comparison based on the
holdout procedure. Copyright ( 1999 John Wiley & Sons, Ltd.
KEY WORDS: Induction of decision trees; Decision tree pruning; State space; Cross-validation study
1. INTRODUCTION
Various heuristic methods have been proposed for the construction of a decision tree,http://www.51lunwen.org/geguolw.html among
which the most widely known is the top-down approach [1]. In top-down induction of decision
trees (TDIDT) it is possible to identify three tasks [2]:
(1) the assignment of each leaf with a class,
(2) the selection of the splits according to a selection measure, and
(3) the decision when to declare a node terminal or to continue splitting it.
The third task is deemed critical for the construction of good decision trees. There are two
di!erent ways to cope with it: Either prospectively deciding when to stop the growth of a tree or
retrospectively reducing the size of a fully expanded tree by pruning some branches. Methods that
control the growth of a decision tree during its construction are called pre-pruning methods, while
the others are called post-pruning methods [3].
* Correspondence to: Prof. Floriana Esposito, Dipartimento di Informatica Universita` degli Studi, via Orabona, 4, 70126
Bari, Italy.
s E-mail: esposito@di.uniba.it
CCC 1524}1904/99/040277}23$17.50 Received June 1997
Copyright ( 1999 John Wiley & Sons, Ltd. Revised May 1999
Many post-pruning (or simply pruning) methods have been proposed in the literature, some of
which are: reduced error pruning, minimum error pruning, pessimistic error pruning, critical value
pruning, cost-complexity pruning, and error-based pruning. A previous comparative study has
already pointed out both their similarities and their di!erences and investigated the real e!ect of
some of these methods on both the predictive accuracy and the size of the induced tree [4, 5]. In
that study, optimally pruned trees have been used to evaluate the maximum improvement
produced by an ideal pruning algorithm.
The main purpose of this article is that of providing a further comparison of these pruning
methods. Their search spaces and search strategies are investigated, in order to analyse their
computational complexity, a论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。

共 1/19 页首页上一页1234567下一页尾页

英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非

   Europe (24-hours)
   EN:13917206902
   china (24-hours)
   CN:13917206902
在线客服团队
    全天候24小时在线客服
      QQ:949925041 
  

微信公众订阅号