英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

小波理论留学生论文精选:Multiscale analysis of geomorphological and geological features in high resolution digital elevation models using the wavelet transform [2]

论文作者:英语论文网论文属性:作业 Assignment登出时间:2013-08-17编辑:zbzbz点击率:3883

论文字数:965论文编号:org201308160905587014语种:英语 English地区:英国价格:免费论文

关键词:留学生论文精选留学生论文范文英国论文

摘要:小波理论是近年来发展起来的一个数值技术,该技术在许多领域得到了广泛的应用,因此,相关的留学生论文也比较多,本文通过一个范文给大家一些写该类论文的提示。

tion DEMs offer the base conditions to perform such an analysis. High resolution describes very fi ne structural levels that stem from different processes. For example, a micro-fold may result from a landslide or from erosion. Thus, the imprint of this feature will not be contained in the same spatial context regarding its relation to coarser features. Although high resolution provides a much better visual rendering of the territory and of its structures, the relations between topographical structures and formations are more compli-cated. Hence they represent a new challenge for quantitative geomor-phology and geomorphometry.

A first attempt to address this challenge was carried out through the development of form indicators, also known as geomorphometry indicators (e.g., Wood, 1996). Geomorphometric indicators are spatial features that can be extracted from a DEM, such as slope, aspect, and curvature. These indicators are geometric because they are computed using the adjustment of a mathematical surface on elevation models. The detection of geomorphological features using this type of indica-tors (as well as hydro-morphological indicators such as the wetness index, watersheds, and streams) is complicated because such indices are dedicated to local scale analysis only. Moreover, in high resolution DEMs, features are nested one into the other, making the interpreta-tion of indicators difficult. This is a computational scale problem (see Lassueur et al., 2006, and References therein) also observed in the use of geomorphometric indicators for the prediction of environmental parameters such as wind speed (Foresti et al., 2011) and orographic precipitation (Foresti and Pozdnoukhov, in press). Wilson and Gallant (2000) showed that the characterization of landscape processes and features based on one specific scale is far too simple to model our environment. In recent years, multiresolution analysis tools based on a generalization of Evans' (1972) geomorphometric indicators have been developed ( Wood, 1996). These tools provide multiple results for one indicator at multiple scales. There is no feature extrac-tion, but rather a multiscale/multiresolution topographical analysis and the extraction of a geometric network. These methods rely essentially on a geometrical analysis, while Jordan and colleagues combined geomorphometric indicators and digital image processing techniques (including edge detectors, histogram slicing, and gradient filters) to detect tectonic faults with DEMs ( Jordan et al., 2005; Jordan, 2007 ).

To enable the detection of a phenomenon and its underlying fea-tures, it is necessary to identify the specific scales at which signi ficant features and their intrinsic relations emerge. A way to move toward the extraction of geomorphological indicators at different scales is to consider DEMs in the frequency domain. Indeed, our environment is composed of frequency information characterizing either the spa-tial domain (as it is considered in this paper) or the temporal domain (e.g. earthquakes or mass movements). A limitation is that almost no natural phenomenon related to Earth science is stationary and  homogeneous, and this made many studies fail. Real phenomena con-sist of a nesting of processes and structural elements, which are inter-dependent, have various scales, and interact in the natural system. This means that the size and shape of every structure depends on the phenomenon it belongs to, but论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。

英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非