英语论文网

留学生硕士论文 英国论文 日语论文 澳洲论文 Turnitin剽窃检测 英语论文发表 留学中国 欧美文学特区 论文寄售中心 论文翻译中心 我要定制

Bussiness ManagementMBAstrategyHuman ResourceMarketingHospitalityE-commerceInternational Tradingproject managementmedia managementLogisticsFinanceAccountingadvertisingLawBusiness LawEducationEconomicsBusiness Reportbusiness planresearch proposal

英语论文题目英语教学英语论文商务英语英语论文格式商务英语翻译广告英语商务英语商务英语教学英语翻译论文英美文学英语语言学文化交流中西方文化差异英语论文范文英语论文开题报告初中英语教学英语论文文献综述英语论文参考文献

ResumeRecommendation LetterMotivation LetterPSapplication letterMBA essayBusiness Letteradmission letter Offer letter

澳大利亚论文英国论文加拿大论文芬兰论文瑞典论文澳洲论文新西兰论文法国论文香港论文挪威论文美国论文泰国论文马来西亚论文台湾论文新加坡论文荷兰论文南非论文西班牙论文爱尔兰论文

小学英语教学初中英语教学英语语法高中英语教学大学英语教学听力口语英语阅读英语词汇学英语素质教育英语教育毕业英语教学法

英语论文开题报告英语毕业论文写作指导英语论文写作笔记handbook英语论文提纲英语论文参考文献英语论文文献综述Research Proposal代写留学论文代写留学作业代写Essay论文英语摘要英语论文任务书英语论文格式专业名词turnitin抄袭检查

temcet听力雅思考试托福考试GMATGRE职称英语理工卫生职称英语综合职称英语职称英语

经贸英语论文题目旅游英语论文题目大学英语论文题目中学英语论文题目小学英语论文题目英语文学论文题目英语教学论文题目英语语言学论文题目委婉语论文题目商务英语论文题目最新英语论文题目英语翻译论文题目英语跨文化论文题目

日本文学日本语言学商务日语日本历史日本经济怎样写日语论文日语论文写作格式日语教学日本社会文化日语开题报告日语论文选题

职称英语理工完形填空历年试题模拟试题补全短文概括大意词汇指导阅读理解例题习题卫生职称英语词汇指导完形填空概括大意历年试题阅读理解补全短文模拟试题例题习题综合职称英语完形填空历年试题模拟试题例题习题词汇指导阅读理解补全短文概括大意

商务英语翻译论文广告英语商务英语商务英语教学

无忧论文网

联系方式

Mobile Communication Networks [14]

论文作者:www.51lunwen.org论文属性:学期论文 termpaper登出时间:2014-05-31编辑:lzm点击率:19299

论文字数:10545论文编号:org201405302339058373语种:英语 English地区:中国价格:免费论文

关键词:Implementation WorkMobile Communication Networks移动通信移动无线网络communication protocols

摘要:Any node can receive a lot of information about the network by placing its interface into promiscuous mode. The information the node can receive can be used to build trust levels for different modes.

at is averaged over all the packets properly delivered for each of the data streams and for all the mobile scenarios. Therefore, there is an averaged value for each combination of:

a. Data traffic rate

b. MPR Coverage parameter

c. TC Redundancy parameter

4.4 Experimental Results:

Simulation work was performed as described in the previous sections. In this section the corresponding results are shown.

4.4.1 Scenarios without Data Traffic

The initial simulation work which was performed over static scenarios wanted to achieve some basic understanding about protocol’s performance and to get some insights on the effects of each proposed strategy to increase the topology knowledge.

Some example tables are graphs are given below which will allow us to have some insight into the network and performance of OLSR in different situations.

Table 4-3: Percentages of nodes selected as MPRs for different values of MPR and TC

Table 4-3 and its corresponding graph, Graph 4-1, show how the amount of nodes selected as MPRs increase with the MPR parameter. Also, it is possible to notice that the amount of chosen MPRs is not affected by the TC strategy.

Graph 4-1: Percentage of nodes selected as MPRs for different values of MPRs and TC

4.4.2 Static Scenarios with Data Traffic

In the previous section, no data traffic was sent and all the scenarios were static, therefore, it is possible to assume that at some point in time the network reaches an stability state where the topology does not change, the nodes that were chosen as MPRs do not change their status and, for the same reason, the topology knowledge does not change either. Therefore, if that is true, what has to be examined is what the impact of data traffic. With that aim one single scenario was chosen and all the different strategies and traffic rates were applied to it while keeping track second by second of the Topology Knowledge and the percentage of nodes chosen as MPRs.

Graph 4-2 shows how the topology knowledge dramatically decreases when data traffic is injected. The topology knowledge drop is at second 35 which means that the last set of broadcasted TC messages properly received was at second number 20, right before the data sources started sending traffic. The last because the protocol configuration says that TC message information has to be kept as valid for up to TOP_HOLD_TIME=15 seconds if no more information is received. Therefore, the lost of TC messages due to high traffic load is reflected with some delay as a decrease on the topology knowledge.

Once that the traffic load decreases the topology knowledge increases again. On the other hand, the traffic load also originates loses in terms of Hello messages, these loses are reflected as an increase on the number of MPRs (Graph 4-3).

Graph 4-2: Topology knowledge for MPR1 under high traffic

Graph 4-3: Percentage of MPRs for MPR=1 and TC=2 under high traffic

Finally, the last metric that tells about protocol performance is the data delivery rate and it is shown in Graph 4-4. In this table we can clearly observe that the data delivery rate decreases with the traffic load going from 98% to 25% approx. Also the largest difference between every strategy combination, under the same tr论文英语论文网提供整理,提供论文代写英语论文代写代写论文代写英语论文代写留学生论文代写英文论文留学生论文代写相关核心关键词搜索。
英国英国 澳大利亚澳大利亚 美国美国 加拿大加拿大 新西兰新西兰 新加坡新加坡 香港香港 日本日本 韩国韩国 法国法国 德国德国 爱尔兰爱尔兰 瑞士瑞士 荷兰荷兰 俄罗斯俄罗斯 西班牙西班牙 马来西亚马来西亚 南非南非